Intel's Core 2 family - TOCK lines Sunny Cove

Dezső Sima

Vers. 1.0

Januar 2019

Contents (1)

- 1. Introduction
- 2. The Core 2 line
- 3. The Nehalem line
- 4. The Sandy Bridge line
- 5. The Haswell line
- 6. The Skylake line
- 7. The Kaby Lake line
- 8. The Kaby Lake Refresh line
- 9. The Coffee Lake line
- 10. The Coffee Lake line Refresh

Contents (2)

- 11. The Cannon Lake line (outlook)
- 12. Sunny Cove
- 13. References

12. Sunny Cove

- 12.1 Introduction to the Sunny Cove
- 12.2 Major enhancements of the Sunny Cove

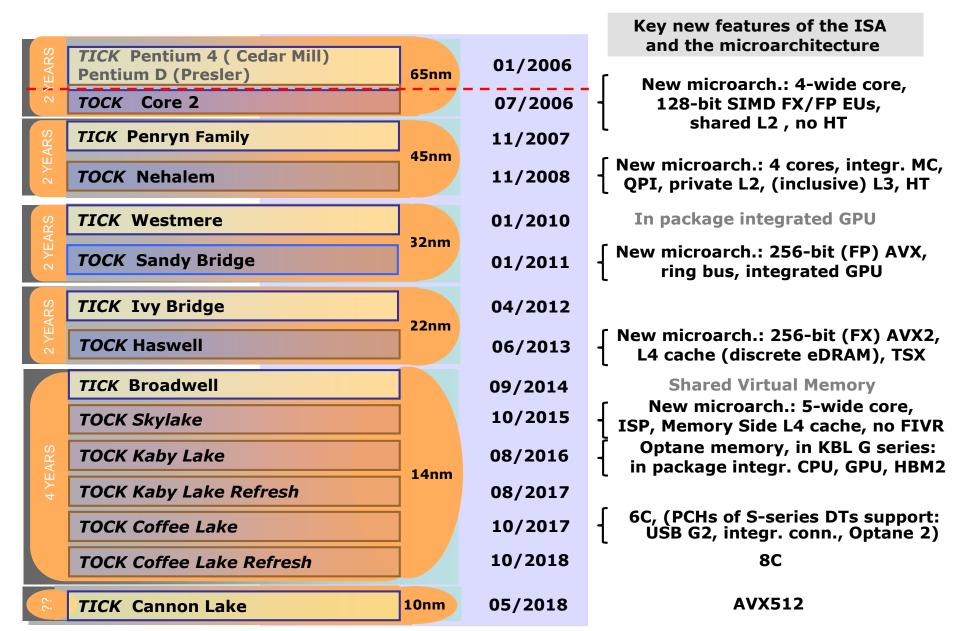
12.1 Introduction to the Sunny Cove

12.1 Introduction to the Sunny Cove [296]

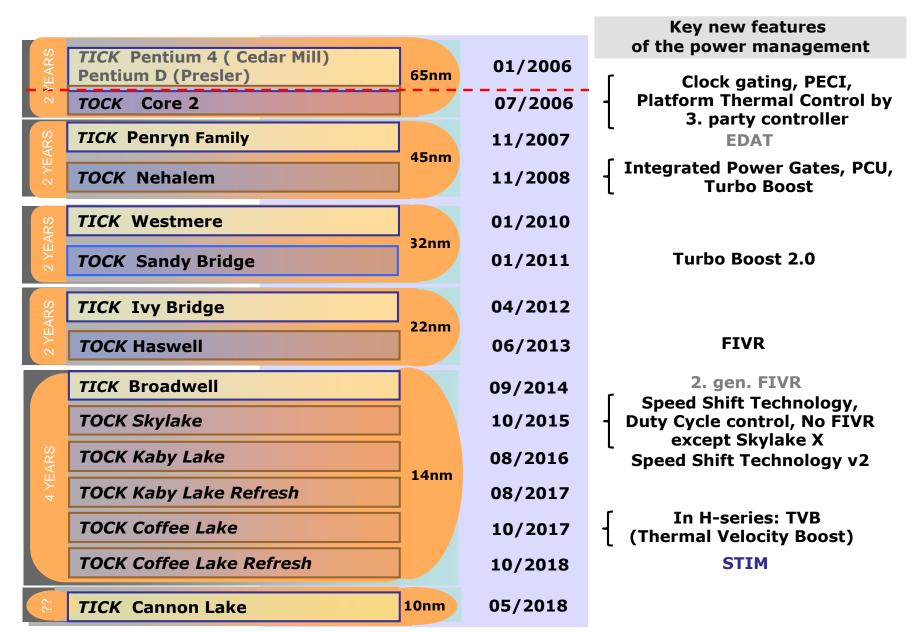
- Announced in 12/2018 at Intel's Architecture Day, to be launched in 2019.
- Manufactured on Intel's 10 nm technology.
- Presumably, the Sunny Cove cores paired with Gen11 graphics will yield the Ice Lake processor.
- Sunny Cove cores offer increased single-threaded performance, new instructions, and 'improved scalability

12.1 Introduction to the Sunny Cove (2)

Intel's CPU roadmap 2019 – 2022 [297]


Evolution of Intel's manufacturing technology [296]

Intel Core Microarchitecture Roadmap					
Core Name	Year Process Node		Improvements		
Skylake	2015	14 nm	Single Threaded Performance Lower Power Other Optimizations		
Kaby Lake	2016	14 nm+	Frequency		
Coffee Lake	2017	14 nm++	Frequency		
Coffee Refresh	2018	14 nm++	Frequency		
Sunny Cove	2019	10 nm	Single Threaded Performance New Instructions Improved Scalability		
Willow Cove	2020 ?	10 nm ?	Cache Redesign New Transistor Optimization Security Features		
Golden Cove	2021 ?	7 / 10 nm ?	Single Threaded Performance AI Performance Networking / 5G Performance Security Features		


The core generations -1

1. gen.				2. gen.	3. gen.	4. gen.	5. gen.		
Core 2 New Microarch. 65 nm	Penryn New Process 45 nm	Nehalem New Microarch. 45 nm	West- mere New Process 32 nm	Sandy Bridge New Microarch. 32 nm	Ivy Bridge New Process 22 nm	Haswell New Microarchi. 22 nm	Broad- well New Process 14 nm		
тоск	ТІСК	тоск	ТІСК	тоск	тіск	тоск	ТІСК		
(2006)	(2007)	(2008)	(2010)	(2011)	(2012)	(2013)	(2014)		
6. gen.	7. gen.	8. gen. ¹ 9. gen.		fc	 ¹Astonishingly, the 8th generation encompasses four processor lines, as follows: Kaby Lake Refresh Kaby Lake G with AMD Vega graphics 				
Skylake	Kaby Lake	Kaby Lake R Coffee KL G-series Lake R		•					
New Microarch.	New Microarch.	KL G-series Coffee Lake Cannon Lake	New		 Coffee Lake (all 14 nm) and the 10 nm Cannon Lake designs [218]. 				
14 nm	14 nm	14/10 nm	14 nm						
тоск	тоск	тоск	тоск						
(2015)	(2016)	(2017/18)	(2018)	R:	Refresh				

The Core generations -2 (based on [3])

The Core generations (based on [3])

12.2 Major enhancements of the Sunny Cove

12.2 Major enhancements of the Sunny Cove Two main directions of increasing processor performance [296]

CORE STRATEGY

THE FOUNDATION FOR COMPUTE SOLUTIONS FROM PCS TO DATA CENTER AND MORE

GENERAL PURPOSE PERFORMANCE

What:

Microarchitecture Enhancements to Improve Performance and Efficiency Across a Broad Set of Applications

How:

Deeper Wider Smarter

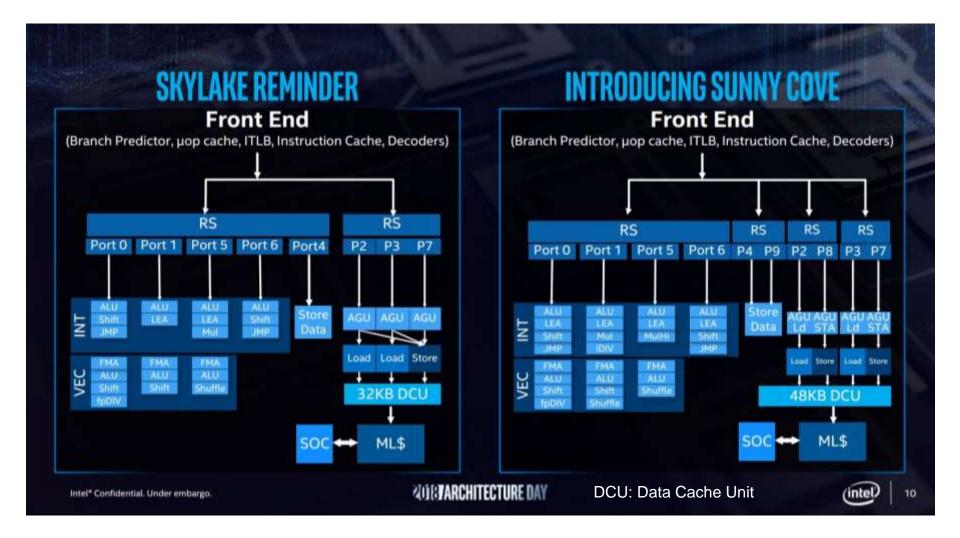
SPECIAL PURPOSE PERFORMANCE

What:

Architecture Extensions Targeted at Specific Use Cases and Algorithms Building Upon the Microarchitecture

How:

1011291


ISA (New Instructions) Software Enabling (Compilers, Libraries)

Intel[®] Confidential, Under embargo

https://ww.anandtech.com/print/13699/intel-architecture-day-2018-core-future-hybrid-x86

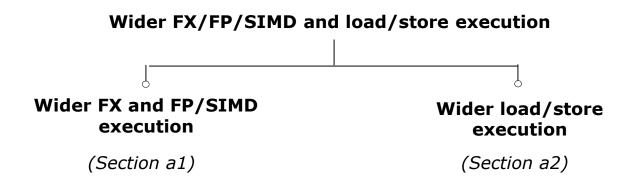
12.2.1 Microarchitecture enhancements to improve performance and efficiency across a broad range of applications in the Sunny Cove -1

Overview – Contrasting the back-ends of Skylake and Sunny Cove [297]-1

Overview – Contrasting the back-ends of Skylake and Sunny Cove -2

Note that Sunny Cove has 10 ports for issuing instructions (up from 8) implemented in the Skylake.

12.2 Major enhancements of the Sunny Cove (4)


Microarchitecture enhancements to improve performance and efficiency across a broad range of applications in the Sunny Cove -2

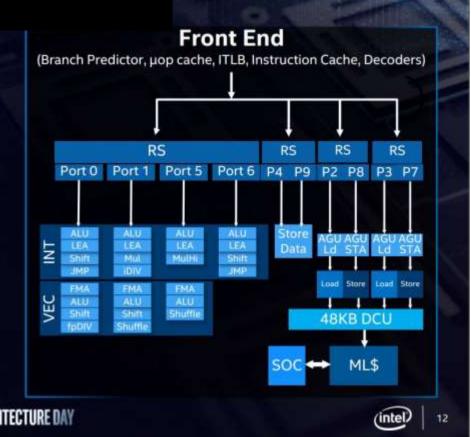
Main areas of enhancing the microarchitecture

- a) wider FX/FP/SIMD and load/store execution (executing more instructions per clock),
- b) deeper key structures, including caches (providing more parallelism per clock cycle) and
- c) smarter units (leading to processing more instructions or data)

12.2 Major enhancements of the Sunny Cove (5)

a) Wider FX/FP/SIMD and load/store execution (executing more instructions per clock)

12.2 Major enhancements of the Sunny Cove (6)


a1) Wider FX and FP/SIMD execution (over the ports 0, 1, 5, 6) [296]

Back-End Execution Resources								
	Skylake		Port		Sunny Cove			
				Intege	r			
	JMP	Shift	ALU	0	ALU	LEA	Shift	JMP
		LEA	ALU	1	ALU	LEA	Mul	iDIV
	Mul	LEA	ALU	5	ALU	LEA	MulHi	
	JMP	Shift	ALU	6	ALU	LEA	Shift	JMP
Vector / FP								
fpDIV	Shift	ALU	FMA	0	FMA	ALU	Shift	fpDIV
	Shift	ALU	FMA	1	FMA	ALU	Shift	Shuffle
	Shuffle	ALU	FMA	5	FMA	ALU	Shuffle	

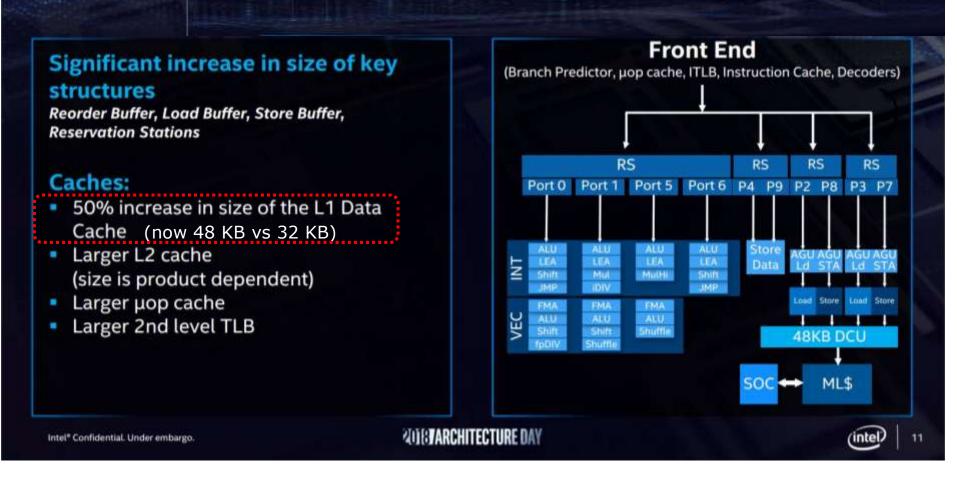
https://www.anandtech.com/print/13699/intel-architecture-day-2018-core-future-hybrid-x86

a2) Wider load/store execution (over the ports 2, 3, 4, 7, 8, 9) [297] -1

- 4→5 wide allocation
- 8→10 Execution Ports
- 2x L1 Store Bandwidth
 - $3 \rightarrow 4$ AGUs
 - $1 \rightarrow 2$ Store Data
- Greater capabilities per execution port (ex. SIMD shuffle, LEA)

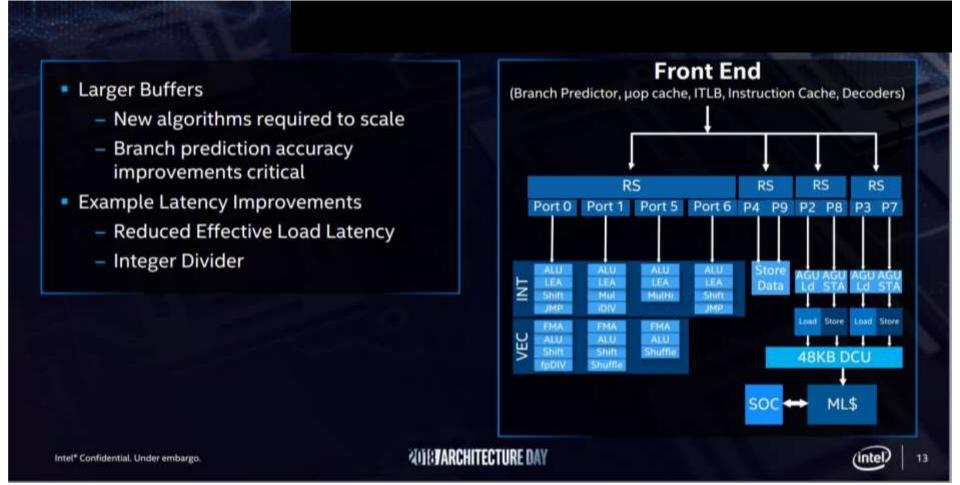
2018 ARCHITECTURE DAY

Wider load/store execution (over the ports 2, 3, 4, 7, 8, 9) [296] -2


Compared with Skylake, Sunny Cove will be capable of issuing dual loads and dual stores per cycle, rather than dual loads and a single store per cycle, as in the Skylake.

Wider load/store execution (over the ports 2, 3, 4, 7, 8, 9) [296] -2

Compared with Skylake, Sunny Cove will be capable of issuing dual loads and dual stores per cycle, rather than dual loads and a single store per cycle, as in the Skylake.


12.2 Major enhancements of the Sunny Cove (10)

 b) Deeper key structures, including caches (providing more parallelism per clock cycle) [297]

12.2 Major enhancements of the Sunny Cove (11)

c) Smarter units (leading to processing more instructions or data) [297] -1

c) Smarter units (leading to processing more instructions or data) -2

In this respect Intel improved branch prediction accuracy, with additional latency improvements, like load latency and a implemented a new faster integer divider unit.

12.2 Major enhancements of the Sunny Cove (13)

13.2.2 Architecture extensions targeting specific use cases and algorithms, building upon the microarchitecture [296], [297]

In addition to the microarchitecture enhancements Sunny Cove introduces the following architecture extensions:

- new instructions to speed up special fields of interest (see subsequently),
- 57 bits linear address space,
- 52-bits physical address space, allowing to address 4 PetaB per socket,
- five levels of paging tables, up from four, and
- new security modes, including User Mode Instruction Prevention, that forbids (if enabled) the execution of certain instructions if the Current Privilege Level (CPL) is greater than 0.

Then user space applications can no longer access system-wide settings, such as the global and local descriptor tables, the task register and the interrupt descriptor table. 12.2 Major enhancements of the Sunny Cove ()

Special areas of interest for improving performance [296]

SUNNY COVE: SPECIA	ALIZED PERFORMANCE	
EXAMPLE AREAS OF INTEREST Al/Machine Learning Cryptography C Compression/Decompression Communications/Networking	 Big-Number Arithmetic (IFMA) Vector AES Vector Carryless Multiply Galois Field SHA 	
General SIMD/Vector Processing Special SIMD/Vector Processing Multi-Threaded & Multiple Agent Processing	IFMA: Integer FMA	

2018VARCHITERTURE D