Intel Core X-series (HED lines)

Dezső Sima

Vers. 2.0

December 2018

Contents

- 1. Introduction
- 2. The Nehalem Extreme Edition Series
- 3. The Westmere Extreme Edition Series
- 4. The Sandy Bridge E-series
- 5. The Ivy Bridge E-series
- 6. The Haswell E-series
- 7. The Broadwell E-series

Contents

- 8. The Skylake X-series
- 9. The Caby Lake X-series
- 10. The Skylake X Refresh series
- 11. References

Note

In this Chapter we use the designations processor line and processor series as synonyms. We note that models of the X-Series carry different tags, like

- (EE) Extreme Edition
- X (Extreme)
- K (Unlocked)

Typically we intend to use the designations xxx E-Series and xxx-E processor models.

1. Introduction

1. Introduction

The X-Series processor models (E-lines) aim at high performance desktops for hardcore gamers and graphics enthusiasts.

They serve as HEDs (High End Desktops) termed also as HEDTs.

1. Introduction (2)

Hardcore gamer scenario [37]

1. Introduction -2

Key features of Intel's X-Series (E-lines/X-lines):

- They provide vs. mainstream desktops typically
 - more cores to utilize more parallelism available in their workloads
 - more PCIe lanes (either on the PCH or on the die) to allow to attach up to 4 discrete graphics cards)
 - more memory channels (to appropriately service more processing resources)
- they are unlocked, nevertheless
- they do not provide integrated graphics, as it is assumed that the installation is intended to provide high quality graphics by attaching multiple discrete graphics cards and
- they have a high power consumption of 130 to 165 W.

Subsequent generations of Intel's Core family

1. gen.		X-Series		2. gen.	3. gen.	4. gen.	5. gen.
Core 2 New Microarch. 65 nm	Penryn New Process 45 nm	Nehalem ^{New} Microarch. 45 nm	West- mere New Process 32 nm	Sandy Bridge ^{New} Microarch. 32 nm	Ivy Bridge New Process 22 nm	Haswell New Microarchi. 22 nm	Broad- well New Process 14 nm
тоск	ТІСК	тоск	ТІСК	тоск	ТІСК	тоск	ТІСК
(2006)	(2007)	(2008)	(2010)	(2011)	(2012)	(2013)	(2014)
6. gen.	7. gen.	8. gen. ¹	9. gen.	. ¹ Asto for	onishingly, the 8 ur processor line	8th generation es, as follows:	encompasses
Skylake New Microarch. 14 nm	Kaby Lake New Microarch. 14 nm	Kaby Lake R/G Coffee Lake Cannon Lake 14/10 nm	Coffee Lake F New Mocroarc 14 nm	e • • • • • • • • • • • • • • • • • • •	Kaby Lake Refr Kaby Lake G wi Coffee Lake and 10 nm Cannon	esh th AMD Vega g d Lake designs [graphics [218].
тоск	тоск	тоск	тоск				
(2015)	(2016)	(2017/18)	(2018)	 R: F	Refresh		

Key new features introduced in Intel's subsequent generations of the Core family -1

Key new features introduced in Intel's subsequent generations of the Core family -2

1. Introduction (7)

Intel's Core based X-Series (called differently, as EE-lines (Extreme Edition), E-lines X-lines, HED-lines or HEDT-lines)

Processors	Techn.	Date of intro.	Max. no. of cores	No. of mem. channels	Highest mem./ speed	PCIe lanes	РСН	Processor socket	TDP (Up to)
1. G. Nehalem EE	45 nm	11/2008	4C	3	DDR3-	36 PCIe 2 0	X58	LGA 1366	130 W
Westmere-EE	32 nm	3/2010	6C	3	1067	on the X58	(Tylersburg)	LGA 1366	130 W
Sandy Bridge-E	32 nm	11/2011	6C	4	DDR3- 1600	40 PCIe 2.0 on the die	X79	LGA 2011	150 W
Ivy Bridge-E	22 nm	9/2013	6C	4	DDR3- 1866		(Patsburg)	LGA 2011	130 W
Haswell-E	14 nm	8/2014	8C	4	DDR4- 2133	40 PCIe 3.0 on the die	X99 (Wellsburg)	LGA 2011-3	140 W
Broadwell-E	14 nm	5/2016	10C	4	DDR4- 2400		X99 (Wellsburg)	LGA_2011-3	140 W
Skylake-X	14 nm	6/2017	18C	4	DDR4- 2666	44 PCI-3.0 on the die	X299 (Basin Falls)	LGA-2066	165 W
Kaby Lake-X	14 nm	6/2017	4C	4	DDR4- 2666	16 PCI-3.0 on the die	X299 (Basin Falls)	LGA-2066	112 W
Skylake-X Refresh	14 nm	10/2018	18C	4	DDR4- 2666	44 PCI-3.0 on the die	X299 (Basin Falls)	LGA-2066	165 W

1. Introduction (8)

Evolution of the core counts in Intel's HED lines (Based on [29])

Overview of Intel's X-Series models up to the Broadwell-E line [Based on 19]

		Nehalem EE (130W)	Westmere EE (130W)	Sandy Bridge-E (130W)	Ivy Bridge-E (130W)	Haswell-E (140W)	Broadwell-E (140 W)
Four cores	<3.0 GHz						
	3.2 GHz	i7-965 EE					
	3.3 GHz	i7-975 EE					
	3.6 GHz			i7-3820			
	3.7 GHz				i7-4820K		
Six cores	3.2 GHz			i7-3930K			
	3.3 GHz		i7-980X	i7-3960X EE		i7-5820K	
	3.4 GHz				i7-4930K		i7_6800K
	3.5 GHz		i7-990X EE	i7-3970X EE (150W)		Ii7-5930K	
	3.6 GHz				i7-4960X EE		i7-6850K
Eight cores	3.0 GHz					i7-5960X EE	
	3.2 GHz						i7-/6900K
Ten cores	3.0 GHz						i7-6950X

Main features of the Nehalem EE and Westmere EE processor models [20]

Processor Number	i7-975 EE	i7-965 EE	i7-990X EE	i7-980X
Core type	Nehalem (Bloomfield)	Nehalem (Bloomfield)	Westmere (Gulftown)	Westmere (Gulftown)
Launch Date	Q2'09	Q4'08	Q1'11	Q1'10
Lithography	45 nm	45 nm	32 nm	32 nm
# of Cores	4	4	6	6
# of Threads	8	8	12	12
Processor Base Frequency	3.33 GHz	3.2 GHz	3.46 GHz	3.33 GHz
Max Turbo Frequency	3.6 GHz	3.46 GHz	3.73 GHz	3.6 GHz
Cache	8 MB	8 MB	12 MB	12 MB
System Bus	QPI	QPI	QPI	QPI
Bus Speed	6.4 GT/s	6.4 GT/s	6.4 GT/s	6.4 GT/s
# of QPI Links	1	1	1	1
ISA Extensions	SSE4.2	SSE4.2	SSE4.2	SSE4.2
VID Voltage Range	0.800V-1.375V	0.800V-1.375V	0.800V-1.375V	0.800V-1.375V
TDP	130 W	130 W	130 W	130 W
Recommended Price	: \$1059	\$990	\$1059	\$1059

Main features of Intel's Sandy Bridge-E and Ivy Bridge-E processor models [21]

Name	Cores/ Threads	Base Clock	Turbo Boost	Multi- plier	L2 cache	L3 cache	Memory channels	PCIe	TDP	Release Date	Price (US)
					Sandy	/ Bridge-E					
Core i7- 3970X		3.50 GHz	4.00 GHz							Q4 2012	\$999
Core i7- 3960X	6/12	3.20 GHz	3.90 GHz	Unlocked	256 KB	2.5 MB/core ¹	4 channels	40	150 W		\$990
Core i7- 3930K		3.20 GHz			/core private	shared (inclusive)	up to DDR3-1600	(PCIe 2.0)		11/2011	\$555
Core i7- 3820	4/8	3.60 GHz	3.80 GHZ	Partially locked					130 W	2/2012	\$305
					Ivy	Bridge-E					
Core i7- 4960X	6/12	3.60 GHz	4.00 GHz		256 1/12	2.5	4 shannala				\$999
Core i7- 4930K	-,	3.40 GHz		Unlocked	/core	MB/core ¹ shared	up to	40 (PCIe 3.0)	130 W	Q3 2013	\$583
Core i7- 4820K	4/8	3.70 GHz	13.90 GHz		private	inclusive)	DDK3-1800				\$323

1: Except i7-3930K and i7-4930K, they have only 2MB/core L3 cache

Main features of Intel's Haswell-E and Broadwell-E processor models [21]

Name	Cores/ Threads	Base clock	Turbo Boost	Multiplier	L2 cache	L3 cache	Memory channels	PCIe	TDP	Releas e Date	Price (US)
Haswell-E											
Core i7- 5960X	8/16	3.0 GHz	3.5 GHz			2.5					\$999
Core i7- 5930K	6/12	3.5 GHz	3.7 GHz	Unlocked	256 KB /core private	MB/core shared	4 channels up to DDR4-2133	40 (PCIe 3.0)	140 W	08/2014	\$550
Core i7- 5820K	0/12	3.3 GHz	3.6 GHz			(inclusive)					\$396
					Broadv	vell-E					
Core i7- 6950X	10/20	3.00 GHz	3.50 GHz								\$1723
Core i7- 6900	8/16	3.20 GHz	3.70 GHz	Unlocked	256 kB/core	2.5 MB/core	4 channels	40 (PCIe 3.0)	140 W	5/2016	\$1089
Core i7- 6850K		3.60 GHz	3.80 GHz	Uniockeu	(private)	shared (inclusive)	DDR3-2400		140 W	5/2010	\$617
Core i7- 6800K	6/12	3.40 GHz	3.60 GHz					28 (PCIe 3.0)			\$434

Main features of Intel's Skylake-X and Kaby Lake-X processor models [38]

					Skylake-X	K						
Name	Cores/ Threads	Base clock	Turbo 2.0	Turbo 3.0	L2 cache	L3 cache	Memory channels	PCIe	TDP	Release Date	Price (US)	
Core i9- 7980XE	18/36	2.6 GHz	4.2 GHz	4.4 GHz							\$1999	
Core i9- 7960X	16/32	2.8 GHz	4.2 GHz	4.4 GHz		1.375 MB/core c shared (non- inclusive)			165 W	9/2017	\$1699	
Core i9- 7940X	14/28	3.1 GHz	4.3 GHz	4.4 GHz			4 channels up to DDR4- 2666	44 (PCIe 3.0)			\$1399	
Core i9- 7920X	12/24	3.0 GHz	4.3 GHz	4.4 GHz	1 MB/core				140 W	8/2017	\$1199	
Core i9- 7900X	10/20	3.2 GHz	4.3 GHz	4.5 GHz	(private)					6/2017	\$999	
Core i7- 7820X	8/16	3.6 GHz	4.3 GHz	4.5 GHz				28 (PCIe 3.0)			\$599	
Core i7- 7800X	6/12	3.4 GHz	4.0 GHz	n.a.							\$389	
				к	aby Lake	-X						
Core i7- 7740X	4/8	4.3 GHz	4.5 GHz	Not	256 kB/core	2 MB/core (shared)	4 channels	16	112 W/	6/2017	\$339	
Core i5- 7640X	4/4	4.0 GHz	4.2 GHz	available	кВ/core (private)	1.5 MB/core (shared)	1.5 DDR4 MB/core 2666 (shared)	DDR4- (PCIe 2666	(PCIe 3.0)	112 VV	6/2017	\$242

Main features of Intel's Skylake-X Refresh processor models [38]

				Sky	lake-X Re	fresh					
Name	Cores/ Threads	Base clock	Turbo 2.0	Turbo 3.0	L2 cache	L3 cache ¹	Memory channels	PCIe	TDP	Release Date	Price (US)
Core i9- 9980XE	18/36	3.0 GHz	4.4 GHz	4.5 GHz		1.375 MB/core					\$1979
Core i9- 9960X	16/32	3.1 GHz	4.4 GHz	4.5GHz		1.375 MB/core					\$1684
Core i9- 9940X	14/28	3.3 GHz	4.4 GHz	4.5 GHz		1.375 MB/core	4 channels DDR4- 2666	Up to 68 (PCIe 3.0)	165 W	10/2018	\$1387
Core i9- 9920X	12/24	3.5 GHz	4.4 GHz	4.5 GHz	1 MB/core (private)	1.6 MB/core					\$1189
Core i9- 9900X	10/20	3.5 GHz	4.4 GHz	4.5 GHz		1.925 MB/core					\$989
Core i9- 9820X	10/20	3.3 GHz	4.1 GHz	4.2 GHz		1.65 MB/core					\$889
Core i7- 9800X	8/16	3.8 GHz	4.4 GHz	4.5 GHz		2.0625 MB/core					\$589

¹Shared (non-inclusive)

2. The Nehalem Extreme Edition Series

2. The Nehalem Extreme Edition Series

- It is part of the 1. gen. Nehalem line.
- Launched in 11/2008.

Figure 2.1: Intel's Tick-Tock development model (Based on [1])

2. The Nehalem Extreme Edition line (2)

Major innovations of the 1. generation Nehalem line [2]

- The major incentive in designing the microarchitecture of Nehalem is: to have native 4 cores.
- 4 cores need however twice as many bandwidth as dual core processors, such as the Core 2.
- Two memory channels used for dual core processors are more or less the limit attachable to the north bridge due to physical and electrical limitations.

Consequently, to provide enough bandwidth for 4 cores, a new memory design was necessary.

Major innovations of the 1. generation 4-core Nehalem line

- Integrated memory controller
- QuickPath Interconnect bus (QPI)
- New cache architecture
- Simultaneous Multithreading (SMT)
- SSE 4.2 ISA extension
- Enhanced power management
- Advanced virtualization
- New socket

Figure 2.2: Die photo of the 1. gen. Nehalem desktop chip (designate Bloomfield)

Main features of the Extreme Edition models of the Nehalem EE-Series [22]

	Cores	Clock	Cache	QPI	TDP	Pricing
i7-975 Extreme Edition	4	3.33GHz	8MB	3200MHz	150W	\$1039
i7-965 Extreme Edition	4	3.20GHz	8MB	3200MHz	150W	\$999
i7-950	4	3.06GHz	8MB	2400MHz	130W	\$574
i7-940	4	2.93GHz	8MB	2400MHz	130W	\$559
i7-920	4	2.66GHz	8MB	2400MHz	130W	\$278

Note that Extreme Edition processors have a TDP of 150 W rather than 130 W as seen for the rest of the line and convert the additional TDP (20 W) to higher clock rate.

Typical system architecture of a Nehalem Extreme Edition processor [23]

2. The Nehalem Extreme Edition line (5)

Note that the system architecture is based on the X58 IOH that provides 36 PCIe 2.0 lanes to attach one or more discrete graphics cards, e.g. via 1x16, 2x16 or 4x8 lanes.

3. The Westmere-Extreme Edition Series

3. The Westmere Extreme Edition line (1)

3. The Westmere Extreme Edition Series

- It is part of the Westmere family.
- Launched in 03/2010.

1. gen.				2. gen.	3. gen.	4. gen.	5. gen.	6. gen.
Core 2 New Microarch.	Penryn New Process	Nehalem New Microarch.	West- mere New Process	Sandy Bridge _{New} Microarch.	Ivy Bridge ^{New} Process	Haswell New Microarchi.	Broad- well New Process	Skylake New Microarchi.
65 nm	45 nm	45 nm	32 nm	32 nm	22 nm	22 nm	14 nm	14 nm
тоск	ΤΙϹΚ	ТОСК	ТІСК	тоск	ТІСК	тоск	ΤΙϹΚ	тоск

Figure 1.1: Intel's Tick-Tock development model (Based on [1])

Westmere 2-core and 6-core die plots [3]

2-core die plot

Arrandale (mobile) Clarkdale (desktop) **6-core die plot** 248 mm2, 1.17 billion transistors) *Gulftown (desktop, Westmere-EP UP/DP server)*

Comparing the die plots of Nehalem EE and Westmere EE processors [24]

Nehalem 45 nm

Gulftown 32 nm

Memory Controller

ncore

Ð

Queue an

Core

ALL BARY HOLE COM

Core

Shared L3 Cache

Core

Misc I/O and QP

Соге

731 mtrs 263 mm²

1017 mtrs 240 mm²

Main features of the Nehalem EE and Westmere EE processors [20]

Processor Number	i7-975 EE	i7-965 EE	i7-990X EE	i7-980X
Core type	Nehalem (Bloomfield)	Nehalem (Bloomfield)	Westmere (Gulftown)	Westmere (Gulftown)
Launch Date	Q2'09	Q4'08	Q1'11	Q1'10
Lithography	45 nm	45 nm	32 nm	32 nm
# of Cores	4	4	6	6
# of Threads	8	8	12	12
Processor Base Frequency	3.33 GHz	3.2 GHz	3.46 GHz	3.33 GHz
Max Turbo Frequency	3.6 GHz	3.46 GHz	3.73 GHz	3.6 GHz
Cache	8 MB	8 MB	12 MB	12 MB
System Bus	QPI	QPI	QPI	QPI
Bus Speed	6.4 GT/s	6.4 GT/s	6.4 GT/s	6.4 GT/s
# of QPI Links	1	1	1	1
ISA Extensions	SSE4.2	SSE4.2	SSE4.2	SSE4.2
VID Voltage Range	0.800V-1.375V	0.800V-1.375V	0.800V-1.375V	0.800V-1.375V
TDP	130 W	130 W	130 W	130 W
Recommended Price	: \$1059	\$990	\$1059	\$1059

Typical system architecture of a Westmere Extreme Edition processor [24]

4. The Sandy Bridge E-Series

4.1 Introduction

 \bullet

- 4.2 Differences to the original Sandy Bridge line
- 4.2.1 Overview
- 4.2.2 Up to 6 cores, no integrated graphics
- 4.2.3 2.5 MB/core vs. 2 MB/core L3 cache
- 4.2.4 4 memory channels

4.2.5 40 PCIe 2. gen. lanes to connect multiple graphics cards to the processor

4.2.6 LGA-2011 socket

4.1 Introduction

The Sandy Bridge E-Series belongs also to the 2. gen. Core processor family.

Introduced in 11/2011 as a "precursor" of the upcoming Sandy Bridge-EN/EP server lines with two cores of the 8 core Sandy Bridge-EN/EP lines disabled.

It targets HEDs (high performance desktops for enthusiast gamers).

It provides 40 configurable PCIe 3.0 lanes that allows to attach up to 4 graphics cards.

1. gen.				2. gen.	3. gen.	4. gen.	5. gen.	6. gen.
Core 2 New Microarch. 65 nm	Penryn ^{New} Process 45 nm	Nehalem ^{New} Microarch. 45 nm	West- mere ^{New} Process 32 nm	Sandy Bridge ^{New} Microarch. 32 nm	Ivy Bridge ^{New} Process 22 nm	Haswell ^{New} Microarchi. 22 nm	Broad- well ^{New} Process 14 nm	Skylake ^{New} Microarchi. 14 nm
тоск	ТІСК	тоск	ТІСК	тоск	ТІСК	тоск	ТІСК	тоск

Figure: Intel's Tick-Tock development model (Based on [1])

Overview of the Sandy Bridge E-Series HED models

Core i7-3960X EE, 6C, HT, no vPro, 11/2011Core i7-3930K,6C, HT, no vPro, 11/2011Core i7-3820,4C, HT, no vPro, 02/2012

Data based on [5], [6]

Main features of the Sandy Bridge E-Series vs. the Sandy Bridge line [8]

Processor	Core Clock	Cores / Threads	L3 Cache	Max Turbo	Max Overclock Multiplier	TDP	Price
Intel Core i7 3960X	3.3GHz	6 / 12	15MB	3.9GHz	57x	130W	\$990
Intel Core i7 3930K	3.2GHz	6 / 12	12MB	3.8GHz	57x	130W	\$555
Intel Core i7 3820	3.6GHz	4 / 8	10MB	3.9GHz	43x	130W	TBD
Intel Core i7 2700K	3.5GHz	4 / 8	8MB	3.9GHz	57x	95W	\$332
Intel Core i7 2600K	3.4GHz	4 / 8	8MB	3.8GHz	57x	95W	\$317
Intel Core i7 2600	3.4GHz	4 / 8	8MB	3.8GHz	42x	95W	\$294
Intel Core i5 2500K	3.3GHz	4 / 4	6MB	3.7GHz	57x	95W	\$216
Intel Core i5 2500	3.3GHz	4 / 4	6MB	3.7GHz	41 x	95W	\$205

Again the extreme performance models have a higher TDP (130 W vs. 95 W) and convert the additional power to raise clock rate and have larger L3 caches.
4.2 Differences to the original Sandy Bridge line

4.2.1 Overview

- Up to 6 cores, no integrated graphics (Section 4.2.2)
- 2.5 MB/core vs. 2 MB/core shared L3 cache available in the Sandy Bridge lines (Section 4.2.3)
- 4 DDR3 memory channels instead of 2 available in the Sandy Bridge lines (Section 4.2.4)
- 40 PCIe 2. gen. lanes for connecting multiple graphics cards to the processor instead of 16 available in the Sandy Bridge lines (Section 4.2.5)
- LGA-2011 socket instead of the LGA-1155 used in the original Sandy Bridge lines (Section 4.2.6)

4.2.2 Up to 6 cores, no integrated graphics

- From the original 8-core Sandy Bridge-EN/EP server design 2 cores are disabled.
- As the Sandy Bridge-E targets HEDs with high end discrete graphics, there is no need for integrated graphics, This is the reason why the Sandy Bridge-E die does not include integrated graphics [7].

4.2.2 Up to 6 cores, no integrated graphics (2)

32 nm 216 mm² 995 mtrs 8 MB L3 32 nm 435 mm² 2.27 B trs 15 MB L3

Comparison of die parameters of recent DT processors [8]

Sandy Bridge-E has about 2x the die area of Sandy Bridge with 2.27 billion transistors, as the next Table indicates.

CPU Specification Comparison									
CPU	Manufacturing Process	Cores	Transistor Count	Die Size					
AMD Bulldozer 8C	32nm	8	~2B	315mm ²					
AMD Thuban 6C	45nm	6	904M	346mm ²					
AMD Deneb 4C	45nm	4	758M	258mm ²					
Intel Gulftown 6C	32nm	6	1.17B	240mm ²					
Intel Sandy Bridge E (6C)	32nm	6	2.27B	435mm ²					
Intel Nehalem/Bloomfield 4C	45nm	4	731M	263mm ²					
Intel Sandy Bridge 4C	32nm	4	995M	216 mm ²					
Intel Lynnfield 4C	45nm	4	774M	296 mm ²					
Intel Clarkdale 2C	32nm	2	384M	81 mm ²					
Intel Sandy Bridge 2C (GT1)	32nm	2	504M	131mm ²					
Intel Sandy Bridge 2C (GT2)	32nm	2	624M	149mm ²					

4.2.3 2.5 MB/core vs. 2 MB/core shared L3 cache

It is revealed as part of the main features of the Sandy Bridge-E line [8]

Processor	Core Clock	Cores / Threads	L3 Cache	Max Turbo	Max Overclock Multiplier	TDP	Price
Intel Core i7 3960X	3.3GHz	6 / 12	15MB	3.9GHz	57x	130W	\$990
Intel Core i7 3930K	3.2GHz	6 / 12	12MB	3.8GHz	57x	130W	\$555
Intel Core i7 3820	3.6GHz	4 / 8	10MB	3.9GHz	43x	130W	TBD
Intel Core i7 2700K	3.5GHz	4 / 8	8MB	3.9GHz	57x	95W	\$332
Intel Core i7 2600K	3.4GHz	4 / 8	8MB	3.8GHz	57x	95W	\$317
Intel Core i7 2600	3.4GHz	4 / 8	8MB	3.8GHz	42x	95W	\$294
Intel Core i5 2500K	3.3GHz	4 / 4	6MB	3.7GHz	57x	95W	\$216
Intel Core i5 2500	3.3GHz	4 / 4	6MB	3.7GHz	41 x	95W	\$205

Cache/memory latencies of the Sandy Bridge-E processors (in cycles) [8]

		L1	L2	L3	Main Memory
Bulldozer	AMD FX-8150 (3.6GHz)	4	21	65	195
	AMD Phenom II X4 975 BE (3.6GHz)	3	15	59	182
	AMD Phenom II X6 1100T (3.3GHz)	3	14	55	157
Sandy Bridge	Intel Core i5 2500K (3.3GHz)	4	11	25	148
Sandy Bridge-E	Intel Core i7 3960X (3.3GHz)	4	11	30	167

Note that larger per core L3 caches (2.5 MB/core instead of 2 MB/core) entails 5 cycles higher L3 cache access times.

4.2.4 4 memory channels

- There are 4 memory channels instead of 2 available in the Sandy Bridge line, inherited from the Sandy bridge-EN/EP server design.
- Support of a single DDR3-1600 DIMM per channel or 2 DDR3-1333 DIMMs per channel [9].

Figure: The Sandy Bridge-E platform with the X79 chipset [9]

Note

There are 4 memory channels provided to support up to 4 graphics cards.

4.2.5 40 PCIe 2. gen. lanes to connect multiple graphics cards (1)

4.2.5 40 PCIe 2. gen. lanes to connect multiple graphics cards to the processor

There is a vast increase in the number of PCIe 2. gen. lanes compared to 16 lanes provided by the original Sandy Bridge line [9].

Figure: The Sandy Bridge-E platform with the X79 chipset [9]

4.2.5 40 PCIe 2. gen. lanes to connect multiple graphics cards (2)

Overview of providing PCIe lanes on Intel desktop processors

Type of available PCIe lanes

Lane configuration options - Sandy Bridge-E [11]

4.2.6 LGA-2011 socket

Due to the additional two memory channels connected to the processor die the Sandy Bridge-E processor needs more pins on its socket than the Sandy Bridge processor that has only two memory channels connected to its die and makes use of the LGA-1155 socket.

Intel's LGA sockets (Land Grid Array)

LGA 775 Pentium 4 Prescott until Nehalem LGA 1156 2. gen. Nehalem (Lynnfield) LGA 1155 Sandy Bridge/Ivy Bridge LGA 1366 1. gen. Nehalem (Bloomfield) LGA 2011 Sandy Bridge-E/ivy Bridge-E 2 memory channels connected to the NB2 memory channels connected to the processor die2 memory channels connected to the processor die3 memory channels connected to the processor die4 memory channels connected to the processor die

LGA 1155 []

LGA 2011 [10]

4.2.6 LGA-2011 socket (2)

Comparing related sockets [8]

4.2.6 LGA-2011 socket (3)

Example for a Sandy Bridge-E/X79 based 4-way SLI multi graphics card configuration (ASUS's 4-Way SLI "Rampage IV Formula" motherboard with GTX 680 4-way ready graphics cards) [12]

5. The Ivy Bridge E-Series

- 5.1 Introduction
- 5.2 Differences to the previous Sandy Bridge-E line
- 5.3 Example for an Ivy Bridge-E based desktop platform with the X79 chipset
- 5.4 Performance increase achieved by the Ivy Bridge-E line vs. the Sandy Bridge-E line

5.1 Introduction

- The Ivy Bridge E-Series belongs also to the 3. gen. Core processor family.
- Introduced in 9/2013 one week before Intel's IDF Fall 2013.
- It targets high performance desktops for hardcore gamers and graphics enthusiasts.
- It provides 40 configurable PCIe 3.0 lanes that enables attaching up to 4 graphics cards.

1. gen.				2. gen.	3. gen.	4. gen.	5. gen.	6. gen.
Core 2 New Microarch. 65 nm	Penryn ^{New} Process 45 nm	Nehalem ^{New} Microarch. 45 nm	West- mere ^{New} Process 32 nm	Sandy Bridge _{New} Microarch. 32 nm	Ivy Bridge ^{New} Process 22 nm	Haswell New Microarchi. 22 nm	Broad- well ^{New} Process 14 nm	Skylake New Microarchi. 14 nm
тоск	ТІСК	тоск	тіск	тоск	ТІСК	тоск	тіск	тоск

Figure: Intel's Tick-Tock development model (Based on [1])

Overview of the Ivy Bridge E-Series models

Core i7-4960X EE, 6C, HT, 9/2013Core i7-4930K,6C, HT, 9/2013Core i7-4820,4C, HT, 9/2013

Data based on [13]

Main features of Ivy Bridge-E models [13]

	Brand Name & Processor Number ¹	Base Clock Speed (GHz)	Turbo Frequency ² (GHz)	Cores/ Threads	Cache	Memory Support	TDP	Socket (LGA)	Pricing (1k USD)
	^{NEW} Intel [®] Core [®] i7 4960X Unlocked	3.6	Up to 4.0	6/12	15 MB	4 channels DDR3 1866	130W	2011	\$990
Ivy Bridge-E	NEW Intel* Core** i7 4930K Unlocked	3.4	Up to 3.9	6/12	12 MB	4 channels DDR3 1866	130W	2011	\$555
	NEW Intel® Core® i7 4820K Unlocked	3.7	Up to 3.9	4/8	10 MB	4 channels DDR3 1866	130W	2011	\$310
Haswell DT	Intel® Core™ i7-4770K Unlocked	3.5	Up to 3.9	4/8	8 MB	2 channels DDR3 1600	95W	1150	\$317

5.2 Differences to the previous Sandy Bridge-E line (2)

5.2 Differences to the previous Sandy Bridge-E models [14]

The Ivy Bridge E-Series provides mainly the same features as the previous Sandy Bridge E-Series, such as

- Up to 6 cores, no integrated graphics
- 2.5 MB/core shared L3 cache
- LGA-2011 socket.

On the other hand it provides the following main enhancements vs. the previous Sandy Bridge-E lines:

- 4 parallel DDR3 memory channels with up to 1866 MT/s rather than up to 1600 MT/s,
- 39 or 40 PCIe 3. gen. lanes to connect up to 4 graphics cards to the processor rather than 40 PCIe 2. gen. lanes, as indicated in the next Figure.

5.2 Differences to the previous Sandy Bridge-E line (3)

Overview of providing PCIe lanes on Intel desktop processors

Die plot of an Ivy Bridge-E processor [15]

5.3 Example for an Ivy Bridge-E based HED platform with the X79 chipset [16]

¹Theoretical maximum bandwidth

² All SATA ports capable of 3 Gb/s. 2 ports capable of 6 Gb/s.

5.4 Performance increase achieved by the Ivy Bridge-E line (1)

5.4 Performance increase achieved by the Ivy Bridge E-Series vs. the previous Sandy Bridge E-Series [17]

Intel's ultimate desktop processor Undisputed leadership on compute-intensive workloads¹

6. The Haswell E-Series

- 6.1 Introduction
- 6.2 Differences to the Ivy Bridge E-Series
- 6.2.1 Overview
- 6.2.2 Integrated Voltage Regulator (IVR)
- 6.2.3 Haswell-E based system architecture
- 6.2.4 DDR4 memory
- 6.2.5 LGA 2011-3 socket

6.1 Introduction

- The Haswell-E line belongs to the 4. gen. Core processor family.
- Introduced in 08/2014.
- It targets HEDs (high performance desktops for hardcore gamers and graphics enthusiasts).
- It has up to 8 cores.
- It provides up to 40 configurable PCIe 3.0 lanes that enable attaching up to 4 graphics cards.

1. gen.				2. gen.	3. gen.	4. gen.	5. gen.	6. gen.
Core 2 New Microarch. 65 nm	Penryn ^{New} Process 45 nm	Nehalem New Microarch. 45 nm	West- mere New Process 32 nm	Sandy Bridge ^{New} ^{Microarch.} 32 nm	Ivy Bridge ^{New} Process 22 nm	Haswell ^{New} Microarchi. 22 nm	Broad- well ^{New} Process 14 nm	Skylake ^{New} Microarchi. 14 nm
тоск	ТІСК	тоск	ТІСК	тоск	ТІСК	тоск	тіск	тоск

Figure: Intel's Tick-Tock development model (Based on [1])

Die plot of the 8-core Haswell-E i7-5960X [19]

Intel® Core™ i7-5960X Processor Extreme Edition Transistor count: 2.6 Billion Die size: 17.6mm x 20.2mm

For the six core models (the i7-5930K and the i7-5820K), one pair of cores is disabled; the pair which is disabled is not always the same, but is always one od the four left-to-right pair of the four rows.

Main features of available models of the Haswell E-Series [19]

Name	Cores/ Threads	Base clock	Turbo Boost	Multiplier	L2 cache	L3 cache	Memory channels	PCle	TDP	Release Date	Price (US)
Core i7- 5960X	8/16	3.0 GHz	3.5 GHz			2.5					\$999
Core i7- 5930K	6/40	3.5 GHz	3.7 GHz	Unlocked	256 KB /core private	MB/core shared	4 channels up to DDR4-2133	40 (PCle 3.0)	140 W	08/2014	\$550
Core i7- 5820K	6/12	3.3 GHz	3.6 GHz			(inclusive)					\$396

6.2.1 Overview (1)

6.2 Differences to the previous Ivy Bridge E-Series [18] **6.2.1 Overview**

Feature	IVB-E	Haswell-E	Haswell
CPU Cores	6 and 4	8 and 6	Up to 4
Shared Cache	Up to 15MB	Up to 20 MB	Up to 8 MB
PCIe Lanes off of processor	40	Up to 40	16
Discrete Gfx Configurations	2x16 / 4x8 of Gen 3 on processor	2x16 / 3x8 of Gen 3 on processor	1x16 / 2x8 of Gen 3
Integrated GPU	No	No	Yes
TDP	130 W	130-140 W	Up to 95 W
Socket	LGA 2011 2011	CLGA 2011-3	LGA 1155
Chipset Support	Patsburg	Wellsburg	Lynx Point
Technologies	SSE4, AVX, VT, AESNI	SSE4, AVX, VT, AESNI	SSE4, AVX, VT, AESNI
Memory	4 Channel DDR3 1866	4 Channel DDR4 2133	2 Channel DDR3 1600

6.2.2 Integrated Voltage Regulator (IVR) aka Fully Integrated Voltage Regulator (FIVR)

- FIVR was introduced in the Haswell basic architecture in 6/2013 and implemented in all categories, except of the high-end Haswell-X line.
- IVR allows to greatly simplify per-core voltage delivery for per-core P-state management, nevertheless, most Haswell lines do not make use of it.
 - The only exception, worth mentioning is the Haswell-EP line (the Xeon e5-1600 v3 and E5-2600 v3 processors) that implements per-core P-state control.

6.2.3 Haswell-E based system architecture (1)

6.2.3 Haswell-E based system architecture [18]

6.2.4 DDR4 memory (1)

6.2.4 DDR4 memory [18]

- 1.2V VDDQ
 - Lower power
 - 288 pin DIMM Connector
 - Improved signal to ground ratio
 - 0.85 mm pin pitch
 - 16 banks
 - Performance
 - New power features
 - Fine grain refresh control, Temp controlled refresh
 - Data bus signaling enhancement One.com
 - Per DRAM addressability, ODT improvements, VDDQ termination, External Vpp

Vpp : DRAM activating power supply (2.5V)

6.2.5 LGA 2011-3 socket (1)

6.2.5 LGA 2011-3 socket [18]

What's Same?

- Same XY dimensions as previous sockets (58.5 x 51.0 mm)
- Same ball pattern pitch (1.016 mm pitch (40 mil), hexagonal pitch)

What's Changing?

- Keyed differently than other R-derivative sockets
 - ILM key different (from LGA2011)
 - Ensures only LGA2011-3 ILMs are assembled with LGA2011-3 sockets
 - Processor keys relative to the y-axis have changed: left / right of center

Socket	×1	x ₂
LGA 2011-0	12	15
LGA 2011-3	14	13

ILM: Independent Loading Mechanism

6.2.5 LGA 2011-3 socket (2)

Remark

The Independent Loading Mechanism (ILM) of Intel's LGA2011 socket [25]

7. The Brodwell E-Series

• 7.1 Introduction

 \bullet

- 7.2 Contrasting main feastures of Broadwell-E processor models with previous generations
- 7.3 Main features of Broadwell-E processor models
- 7.4 The Turbo Boost 3.0 Technology
- 7.5 Example: Broadwell-E based enthusiast's platform

7.1 Introduction

- The Broadwel E-Series belongs to the 5. gen. Core processor family.
- Introduced in 05/2016.
- It targets HEDs (high performance desktops for hardcore gamers and graphics enthusiasts).
- It has up to 10 cores.
- It provides up to 40 configurable PCIe 3.0 lanes that enables to attach up to 5 graphics cards¹.

1. gen.				2. gen.	3. gen.	4. gen.	5. gen.	6. gen.
Core 2	Penryn New Brocess	Nehalem	West- mere	Sandy Bridge _{New}	Ivy Bridge _{New}	Haswell New	Broad- well _{New}	Skylake
65 nm	45 nm	45 nm	Process 32 nm	Microarch. 32 nm	Process 22 nm	22 nm	Process 14 nm	14 nm
тоск	ΤΙϹΚ	тоск	TICK	тоск	ТІСК	тоск	ТІСК	тоск

Figure: Intel's Tick-Tock development model (Based on [1])

¹Requires additonal system clocks to be provided by third party components.

Evolution of the core count of HEDs up to the Broadwell E-Series [29]

Die micrograph of the 10-core Broadwell-E 6950X model [26]

7.2 Contrasting Broadwell-E processor models with previous generations (1)

7.2 Contrasting main features of Broadwell-E processor models with previous generations [28]

Brand	Intel® Core™ i7 Process	or / Intel® X99 Chipset	Intel® Core™ i7 Processor / Intel® X79 Chipset
Processor Family (Year)	BDW-E 2016	HSW-E 2014	IVB-E 2013
CPU Cores	10 , 8 and 6	8 and 6	6 and 4
Intel* Turbo Boost Max Technology 3.0	Yes	No	No
Shared Cache	Up to 25MB	Up to 20MB	Up to 15MB
PCIe* Lanes off of processor	Up to 40 (6800K has 28)	Up to 40 (5820K has 28)	40
Discrete GFX Configurations	2x16 / 5x81 of Gen 3 on processor	2x16 / 5x8 ¹ of Gen 3 on processor	2x16 / 4x8 of Gen 3 on processor
Memory	4 Channel DDR4 2400	4 Channel DDR4 2133	4 Channel DDR3 1866
TDP	140 W	140 W	130 W
Socket	LGA 2011-v3	LGA 2011-v3	LGA 2011
Unlocked	Yes	Yes	Yes

7.3 Main features of the Broadwell-E processor models [28]

Intel® Core™ i7 Processor number	Base Clock Speed (GHz)	Intel® Turbo Boost Max Technology 3.0	Intel" Turbo Boost Technology 2.0 Frequency ² (GHz)	Cores/ Threads	Cache	PCI Express* 3.0 Lanes	Memory Support	TDP	Socket (LGA)	Pricing (1K USD)
6950X NEW	3.0	Enabled	Up to 3.5	10/20	25MB	40	4 channels DDR4-2400	140W	2011- v3	\$1723
6900K NEW	3.2	Enabled	Up to 3.7	8/16	20MB	40	4 channels DDR4-2400	140W	2011- v3	\$1089
6850K NEW	3.6	Enabled	Up to 3.8	6/12	15MB	40	4 channels DDR4-2400	140W	2011- v3	\$617
6800K NEW	3.4	Enabled	Up to 3.6	6/12	15MB	28	4 channels DDR4-2400	140W	2011- v3	\$434
6700K	4.0	Not Supported	Up to 4.2	4/8	8MB	16	2 channels DDR4-2133 DDR3L-1600	91W	1150	\$339
6600K	3.5	Not Supported	Up to 3.9	4/4	6MB	16	2 channels DDR4 2133 DDR3L-1600	91W	1150	\$242

7.4 The Turbo Boost 3.0 (aka Turbo Boost Max 3.0) Technology [27] -1

- It is an enhancement to the Turbo Boost 2.0 technology introduced in the Sandy Bridge microarchitecture and used also in the Broadwell-E line.
- The Turbo Boost 2.0 technology raises the base frequency of all active cores in case of a light workload as far as the TDP allows it.
- By contrast the Turbo Boost 3.0 technology aims at increasing the performance of single threaded applications.
- To achieve this, during processor testing Intel determines the max. clock speeds of all cores and arrranges the cores into a list according to their max clock speed, as seen in the next Figure, where core 9 is the highest speed core.

Example core speed list used in the Turbo Boost 3.0 mode [27]

💒 Intel® Turbo Boost Max Technolo	ogy 3.0		- • •
Enable Foreground App Has Priority			≡
Turbo Boost Max Applications	<u>A</u> dd App	Core List	
MultiThread.exe SingleThread.exe Dolphin.exe		Core 9 Core 4 Core 8 Core 3 Core 7 Core 2 Core 6 Core 1 Core 5 Core 0	
Profile: Default		L	Apply Cancel

7.4 The Turbo Boost 3.0 (aka Turbo Boost Max 3.0) Technology [27] -2

- The core list is written into the processor (presumable into an MSR). For single threaded workloads the fastest core (termed the favored core) will be activated.
- Turbo Boost 3 requires a special driver which should be distributed in X99 motherboard driver packages and later on also in the Windows 10.

Intel claims that using Turbo Boost 3.0 in Broadwell-E can boost the performance of single-threaded applications by about 15 % [294], as seen in the next Table.

Turbo 2.0 and Turbo 3.0 clock frequencies of the Broadwell-E models [39]

	Cores/threads	Base clock GHz	Turbo 2.0 clock GHz	Turbo 3.0 clock Ghz
I7-6950X	10/20	3.0	3.5	4.0
I7-6900K	8/16	3.2	3.7	4.0
I7-6850K	6/12	3.6	3.8	4.0
I7-6800K	6/12	3.4	3.6	3.8

Remarks to the Turbo Boost Max 3.0 technology

- In practice, motherboard manufacturers often didn't support it or they do disable it in the BIOS by default.
- If users intend to make use of it they have to install the drivers and the BIOS as well.

7.5 Example: Broadwell-E based enthusiast's platform with the X99 chipset [40]

8. The Skylake X-Series

- 8.1 Introduction to the Basin Falls (X299 PCH-based) platform
- 8.2 Introduction to the Skylake X-Series
- 8.3 Key innovations of the Skylake X-Series
- 8.4 Performance assessment of the Skylake-X Series

8.1 Introduction to the Basin Falls (X299 PCH-based) platform

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (1)

8.1 Introduction to the Basin Falls (X299 PCH-based) platform

- Announced in 5/2017 launched in 7/2017.
- It targets enthusiast gaming, VR, content creation and overlocking.
- At its introduction the platform is based on two Caby Lake-X and three Skylake-X processor models as well as the X299 PCH.
- The processors are manufactured on the 14 nm+ technology whereas the PCH on 22 nm.
- Above processor series include Intel's new powerful, scalable high-end desktop (HED) processor models that scale from 4 cores to 18 cores.
- These processors (as all E-Series processors) do not incorporate integrated graphics but are used along with discrete graphics cards.
- The new processors are launched to compete with AMD's Ryzen and ThreadRipper lines that incorporate 4 to 16 cores.

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (2)

Overview of the processor models of the Kaby Lake X and Skylake X-Series

The Kaby Lake X-Series (2-chip designs, no integrated graphics, unlocked, LGA2066, Z299 chipset)

112 Watt X-Series

Core i7-7740X, 4C, HT, 6/2017 Core i5-7640X, 4C no HT, 6/2017

The Skylake X-Series (2-chip designs, no integrated graphics, unlocked, LGA2066, Z299 chipset)

140 Watt X-Series

Core i9-7920X, 12C, HT, 9/2017 Core i9-7900X, 10C, HT, 8/2017 Core i7-7820X, 8C, i7-7800X 6C, HT, 6/2017

165 Watt X-Series

Core i9-7980XE, 18C, i9-7960X, 16C, i9-7940X 14C, HT, 9/2017

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (3)

Line-up of the Kaby Lake X and Skylake X-Series processors [38]

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (4)

Platform comparison: Basin Falls vs. Broadwell-E and Haswell-W [38]

Brand	New Intel® Core™ X Intel® X29	-series processor/ 99 chipset	Intel® Core™ X-series processor/ Intel® X99 chipset	Intel® Core™ X-series processor/ Intel® X99 chipset
Processor family (year)	SKL-X 2017	KBL-X 2017	BDW-E 2016	HSW-E 2014
CPU cores	18, 16, 14, 12, 10, 8, and 6	4	10, 8, and 6	8 and 6
Intel® Turbo Boost Max technology 3.0	Yes ¹	No	Yes	No
Shared cache	Up to 24.75 MB ²	Up to 8 MB	Up to 25 MB	Up to 20 MB
PCIe lanes off of processor	Up to 44 (7800X & 7820X have 28) ³	16	Up to 40 (6800K has 28) ³	Up to 40 (6800K has 28) ³
Discrete GFX configurations	2x16/4x8 ⁴ of gen. 3 on processor	1x16/2x8 of gen. 3 on processor	2x16/4x8 ⁴ of gen. 3 on processor	2x16/4x8 ⁴ of gen. 3 on processor
Memory	Four-channel DDR4 2666 ¹	Two-channel DDR4 2666	Four-channel DDR4 2400	Four-channel DDR4 2133
TDP	165W, 140W	112W	140W	140W
Socket	LGA 2066	LGA 2066	LGA 2011-v3	LGA 2011-v3
Unlocked	Yes	Yes	Yes	Yes

Not available on all SKUs.

See rebalancing cache hierarchy slide for details.

3. Motherboards must be Thunderbolt™ technology ready.

Requires additional system clocks to be provided by third-party components.

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (5)

Key features of the Core X-Series (Basin Falls) processors [41]

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (6)

Main features of the Kaby Lake X and Skylake X processor models (Processors of the Basin Falls platform) [38]

Processor num	ber¹	Base clock speed (GHz)	Intel® Turbo Boost Technology 2.0 frequency² (GHz)	Intel® Turbo Boost Max Technology 3.0 Freqency ³ (GHz)	Cores/ threads	L3 cache	PCI express 3.0 lanes	Memory support	TDP	Socket (LGA)	RCP Pricing (1K USD)
i9-7980XE	NEW	2.6	4.2	4.4	18/36	24.75 MB	44	Four channels DDR4-2666	165W	2066	\$1,999
i9-7960X	NEW	2.8	4.2	4.4	16/32	22 MB	44	Four channels DDR4-2666	165W	2066	\$1,699
i9-7940X	NEW	3.1	4.3	4.4	14/28	19.25 MB	44	Four channels DDR4-2666	165W	2066	\$1,399
i9-7920X	NEW	2.9	4.3	4.4	12/24	16.5 MB	44	Four channels DDR4-2666	140W	2066	\$1,199
i9-7900X	NEW	3.3	4.3	4.5	10/20	13.75 MB	44	Four channels DDR4-2666	140W	2066	\$999
i7-7820X	NEW	3.6	4.3	4.5	8/16	11 MB	28	Four channels DDR4-2666	140W	2066	\$599
i7-7800X	NEW	3.5	4.0	NA	6/12	8.25 MB	28	Four channels DDR4-2400	140W	2066	\$389
i7-7740X	NEW	4.3	4.5	NA	4/8	8 MB	16	Two channels DDR4-2666	112W	2066	\$339
i5-7640X	NEW	4.0	4.2	NA	4/4	6 MB	16	Two channels DDR4-2666	112W	2066	\$242

1. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families.

See intel.com/products/processor_number for details.

2. Refers to the maximum dual-core frequency that can be achieved with Intel® Turbo Boost Technology 2.0.

3. Refers to the maximum dual-core frequency that can be achieved with Intel® Turbo Boost Max Technology 3.0

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (7)

The Basin Falls platform with the X299 chipset [30]

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (8)

Main features of the X299 chipset of the Basin Falls platform [38]

INTEL® X299 CHIPSET Redefines the enthusiast desktop experience

INCREASED SYSTEM RESPONSIVENESS

Intel® Optane™ memory ready¹

Faster throughput times with DMI 3.0²

IMPROVED I/O CAPABILITIES

30 total high-speed I/O lanes with increased port flexibility:

- Up to 24 PCIe 3.0 lanes
 - Up to 8 SATA 3.0 ports
- Up to 10 USB 3.0 ports

Up to three Intel® Rapid Storage Technology PCIe 3.0 x4 storage support

Supports Intel® Ethernet Connection I219 (Jacksonville LAN PHY)

ULTIMATE SCALABILITY

New Socket R4 (LGA 2066) – compatible with all new Intel® Core™ X-series processors (4C–18C)

1. Compared to HDD alone.

2. Compared to Intel® X99 Chipset.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information, go to http://www.intel.com/performance.

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (9)

Remark

- In the Z299 PCH Intel makes use of the HSIO concept.
- HSIO (High-Speed I/O) lanes of the PCH are a lower level layer beneath the PCIe layer.
- It provides flexibility (in given limits) in implementing I/O-lanes, like USB lanes, PCIe lanes or SATA lanes to the OEMs.
- As indicated in the next Figure (for the Z170 PCH), HSIO lanes can be flexibly configured.

8.1 Introduction to the Basin Falls (X299 PCH-based) platform (10)

Port flexibility on the Z170 PCH lanes [42]

HSIO Port Flexibility - Skylake PCH

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
USB3 #1	USB3 #2	USB3 #3	USB3 #4	USB3 #5	USB3 #6	USB3 #7	USB3 #8	USB3 #9	USB3 #10	PCIe #5	PCIe #6	PCIe #7	PCIe #8	PCIe #9	PCIe #10	PCIe #11	PCIe #12	PCIe #13	PCIe #14	PCIe #15	PCIe #16	PCIe #17	PCIe #18	PCIe #19	PCIe #20
						PCIe #1	PCIe #2	PCIe #3	PCIe #4																
														SATA #0	SATA			SATA #0*	SATA #	SATA :	SATA :	SATA	SATA		
	SSIC #1	SSIC #2							GbE	GbE				GbE	营		GbE	GbE	*1	#2	#3	#4	54		
						10	х	4			×	4			X	4			х	4			X	4	1
						X	2	X	2	X	2	X	2	X	2	×	2	X	2	×	2	×	2	X	2
						-								Intel P	Cle Stor	age De	vice #1	intel P	Cle Stor	age Dev	ice #2	Intel PC	De Stor	age Dev	rice #3

Suggested liquid cooling solution for the Core X-Series from Intel [38]

INTEL[®] LIQUID COOLING TS13X HIGH-PERFORMANCE THERMAL SOLUTION FOR ENTHUSIASTS

Separate boxed SKU available from distribution and at retail

Fan speed	800–2,200 RPM (four-wire PWM)
Fan dimensions	120 mm x 120 mm x 25 mm
Fan CFM	73.84 CFM
Unit noise level	21 dBA @ 800 RPM 35 dBA @ 2,200 RPM
Radiator dimensions	150 mm x 118 mm x 37 mm
Pump Z height	31 mm
Total thermal solution weight	820 grams
Cooling liquid	Propylene glycol
Thermal interface material	Dow Corning* TC-1996

Compatible with socket 2011/1366/115X Estimated retail pricing \$85–\$100

8.2 Introduction to the Skylake X-Series

8.2 Introduction to the Skylake X-Series -1

- Manufactured on 14 nm technology.
- Launched in three waves from 06/2017 to 09/2017 as follows:
 - the 6/8/10-core models in 06/2017
 - the 12-core model in 08/2017 and
 - the 14/16/18-core models in 09/2017.

Main features of the Skylake-X models [43]

		Skylak	e-X Process	sors								
	7800X	7820X	7900X	7920X	7940X	7960X	7980XE					
Silicon		LCC			HCC							
Cores / Threads	6/12	8/16	10/20	12/24	14/28	16/32	18/36					
Base Clock / GHz	3.5	3.6	3.3	2.9	3.1	2.8	2.6					
Turbo Boost 2.0/ GHz	4.0	4.3	4.3	4.3	4.3	4.2	4.2					
TurboMax 3.0/ GHz (see Note)	N/A	4.5	4.5	4.4	4.4	4.4	4.4					
L3	1	.375 MB/cor	е		1.375	MB/core						
PCIe Lanes	2	8	44		2	4						
Memory Channels		4				4						
Memory Freq DDR4	2400	26	66		26	666						
TDP		140W		140W		165W						
Launched	6/2017	6/2017	6/2017	8/2017	9/2017	9/2017	9/2017					
Price	\$389	\$599	\$999	\$1199	\$1399	\$1699	\$1999					

Turbo 2.0 frequencies of Skylake-X processor models for different core loadings [43]

	Intel LGA2066 Non-AVX Turbo Frequencies																					
AnandTech	Cores	LLC	TDP	Base	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Core i9 7980XE	18	24.75	165	2.60	4.2	4.2	4.0	4.0	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.5	3.5	3.5	3.5	3.4	3.4
Core i9 7960X	16	22.00	165	2.80	4.2	4.2	4.0	4.0	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.6	3.6	3.6	3.6		
Core i9 7940X	14	19.25	165	3.10	4.3	4.3	4.1	4.1	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.8	3.8				
Core i9 7920X	12	16.50	140	2.90	4.3	4.3	4.1	4.1	4.0	4.0	4.0	4.0	3.8	3.8	3.8	3.8						
Core i9 7900X	10	13.75	140	3.30	4.3	4.3	4.1	4.1	4.0	4.0	4.0	4.0	4.0	4.0				S	kyla	ke->	X	
Core i7 7820X	8	11.00	140	3.60	4.3	4.3	4.1	4.1	4.0	4.0	4.0	4.0										
Core i7 7800X	6	8.25	140	3.50	4.0	4.0	4.0	4.0	4.0	4.0												
Core i7 7740X	4	8.00	112	4.00	4.5	4.5	4.5	4.5									v					
Core i5 7640X	4	6.00	112	4.30	4.4	4.4	4.4	4.4							K	aby	-X					

Note -1

- With the Turbo Boost Max 3.0 (aka TurboMax 3.0 or Turbo Boost 3.0) technology max. speeds
 of all cores are measured while the processor is tested, and the cores are arranged into a
 list according to their speed, called the Core list, with the fastest core at the top.
- This list is stored in an MSR (Model Specific Register).

Foreground App Has Priority	- 14 - 15 Mar		-
while1_1st.exe while1_2nd.exe	Core List Core 1 Core 7 Core 6 Core 5 Core 4 Core 3 Core 2 Core 0		

Table: Core list used in Intel's Turbo Boost Max Technology 3.0 [44]

Note -2

- The Turbo Boost Max 3.0 Technology speeds up the execution of single core applications by allocating the fastest core from the Core list to such workloads.
- Turbo Boost Max 3.0 was introduced in Broadwell-E models (2016) and in the Xeon E5-1600 v4 Series Broadwell-based server processors (2016).
- There are however some requirements for utilizing the TurboMax 3.0 Technology including proper OS, BIOS and driver [44].
- The subsequent Skylake-X Series processors (e.g. i9-78xxX to i9-79xxXE) (2017) support further on this technology.
- Nevertheless, the following Skylake-X Refresh Series processors introduced an updated Turbo Boost Max Technology 3.0 that improves both single core and dual core performance by allocating the two fastest cores if two cores are needed.

Contrasting Intel's and AMD's competing HED models [43]

		AMI	D vs Intel								
	TR 1900X	TR 1920X	TR 1950X	7980XE							
Silicon	Ĩ	2 x Zeppelir	า	НСС							
Cores / Threads	8/16	12/24	16/32	12/24	18/36						
Base Clock / GHz	3.8	3.5	3.4	2.9	3.1	2.8	2.6				
Turbo Clock 2.0/ GHz	4.0	4.0	4.0	4.3	4.3	4.2	4.2				
ITBM3.0	4.2	4.2	4.2	4.4	4.4	4.4	4.4				
L2	Ľ	8/core									
L3	32 MB	64	MB		1.375 I	MB/core					
PCIe Lanes		60			4	14					
Memory Channels		4				4					
Memory Freq DDR4		2666	2666								
TDP		180W		140W 165W							
Launched	8/2017	8/2017	8/2017	8/2017	9/2017	9/2017	9/2017				
Price	\$549	\$799	\$999	\$1199	\$1399	\$1699	\$1999				

Note

- Benchmark results show that Intel's Skylake-X based models are superior over AMD's comparable 1. gen. ThreadRipper models indicated above [43].
- Nevertheless, AMD's subsequent, 2. gen. ThreadRipper models (TR2xxxx), launched between 8/2018 and 10/2018 regained superiority over Intel's related Skylake-X based models.
- In the next turn, however, in 10/2018 Intel launched their Core-X Refresh (i9-9xxxX/ i9-9990XE) Series processors that took back the leadership from AMD's 2. gen. ThreadRippers.

Derivation of the Skylake-X models -2 [43]

- The Skylake-S models are derived from the Skylake-SP server designs by disabling not needed parts of the design, e.g. UPI links, two memory controllers from the available 6 etc.
- The 6/8/10-core models are derived from the LCC (Low Core Count) and the 12/14/16-core models from the HCC (High Core Count) Skylake-SP dies, as indicated below.

Skylake-SP Die sizes									
	Arrangement	Dimensions (mm)	mensions (mm) Die area (mm ²)						
LCC Low Core Count)	3x4 (10-core)	22.0 x 14.0	308 mm2						
HCC (High Core Count)	4x5 (18-core)	22.0 x 21.5	473 mm2						
XCC Extreme Core Count)	5x6 (28-core)	21.5 x 31.5	677 mm2						

Table: Skylake-SP die layouts [43]

For comparison: Skylake-SP's LLC and HCC die configurations [32]

CHA – Caching and Home Agent ; SF – Snoop Filter ; LLC – Last Level Cache ; Core – Skylake -SP Core; UPI – Intel[®] UltraPath Interconnect

Figure: LCC die layout of Skylake-SP processors Figure: HCC die layout of Skylake-SP processors

2667

3x DDR4

Note that the cores are interconnected via a 2D mesh (to be discussed later).

Example: Die micrograph of the i9-7980XE [a] and core configuration of the 18-core Skylake-SP (Xeon Gold 6150) [32] [38]

- No UPI links
- Only 44 PCI 3.0 lanes
- Only 4 Memory channels

CHA – Caching and Home Agent ; SF – Snoop Filter ; LLC – Last Level Cache ; Core – Skylake-SP Core; UPI – Intel® UltraPath Interconnect

Main features of the Skylake-X models [38]

UNLOCKED INTEL [®] CORE [™] X-SERIES PROCESSOR FAMILY												
Processor number ¹		Base clock speed (GHz)	Intel® Turbo Boost Technology 2.0 frequency ² (GHz)	Intel® Turbo Boost Max Technology 3.0 Freqency ³ (GHz)	Cores/ threads	L3 cache	PCI express 3.0 lanes	Memory support	TDP	Socket (LGA)	RCP Pricing (1K USD)	
i9-7980XE	NEW	2.6	4.2	4.4	18/36	24.75 MB	44	Four channels DDR4-2666	165W	2066	\$1,999	
i9-7960X	NEW	2.8	4.2	4.4	16/32	22 MB	44	Four channels DDR4-2666	165W	2066	\$1,699	
i9-7940X	NEW	3.1	4.3	4.4	14/28	19.25 MB	44	Four channels DDR4-2666	165W	2066	\$1,399	
i9-7920X	NEW	2.9	4.3	4.4	12/24	16.5 MB	44	Four channels DDR4-2666	140W	2066	\$1,199	
i9-7900X	NEW	3.3	4.3	4.5	10/20	13.75 MB	44	Four channels DDR4-2666	140W	2066	\$999	
i7-7820X	NEW	3.6	4.3	4.5	8/16	11 MB	28	Four channels DDR4-2666	140W	2066	\$599	
i7-7800X	NEW	3.5	4.0	NA	6/12	8.25 MB	28	Four channels DDR4-2400	140W	2066	\$389	
i7-7740X	NEW	4.3	4.5	NA	4/8	8 MB	16	Two channels DDR4-2666	112W	2066	\$339	
i5-7640X	NEW	4.0	4.2	NA	4/4	6 MB	16	Two channels DDR4-2666	112W	2066	\$242	

1. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families.

See intel.com/products/processor_number for details.

2. Refers to the maximum dual-core frequency that can be achieved with Intel® Turbo Boost Technology 2.0.

3. Refers to the maximum dual-core frequency that can be achieved with Intel® Turbo Boost Max Technology 3.0

8.3 Key innovations of the Skylake X-Series discussed

- 8.3.1 AVX512
- 8.3.2 Re-architected L2/L3 cache hierarchy
- 8.3.3 Mesh architecture
- 8.3.4 Improved Turbo Boost Max technology 3.0

8.3 Key innovations of the Skylake X-Series processors discussed

- 8.3.1 AVX512 (Section 8.3.1)
- 8.3.2 Re-architected L2/L3 cache hierarchy (Section 8.3.2)
- 8.3.3 Mesh architecture (Section 8.3.3)
- 8.3.4 Improved Turbo Boost Max Technology 3.0 (Section 8.3.4)

8.3.1 AVX512
8.3.1 AVX512 Evolution of Intel's SIMD extensions

Designation	Intro.	Processor line	Technology	SIMD registers	SIMD Register set	Instruction set
MMX	1997	Pentium MMX	350 nm	MM [0:7] ¹	8x64 bit	FX SIMD
SSE	1999	Pentium III	250 nm	XMM [0:7]	8x128 bit	FX/FP SIMD
SSE2	2000	Pentium 4	180 nm	XMM [0:15]	16x128 bit	FX/FP SIMD
AVX	2011	Sandy Bridge	32 nm	YMM [0:15]	16x256 bit	FP SIMD
AVX2	2013	Haswell	22 nm	YMM [0:15]	16x256 bit	FX/FP SIMD
AVX512	2017 2017 2018	Skylake-SP Core-X Cannonlake	14 nm	ZMM [0:31]	32x512 bit	FX/FP SIMD

¹The MM registers are aliased with the mantissa part of the FP registers

Extension of the available SIMD register space [31]

Different versions of the AVX512 instruction set [31] Source: Intel SDE 8.40 (2017-06-01)

AVX-512-F: Foundation instructions AVX-512-CD: Conflict Detect (loop vectorization with possible conflicts) AVX-512-BW: Support for 512-bit Word support AVX-512-DQ: More instructions for double/quad math operations AVX-512-VL: Foundation plus <512-bit vector length support AVX-512-ER: Exponential and Reciprocal AVX-512-IFMA: Integer Fused Multiply Add with 52-bit precision AVX-512-PF: Prefetch Instructions AVX-512-VBMI: Vector Byte Manipulation Instructions AVX-512-4VNNIW: Vector Neural Network Instructions Word (variable precision) AVX-512-4FMAPS: Fused Multiply Accumulation Packed Single precision

8.3.1 AVX512 (4)

Performance increase over SIMD generations [32]

8.3.2 Re-architected L2/L3 cache hierarchy

8.3.2 Re-balancing the L2/L3 cache hierarchy [38]

- Shift cache balance from shared-distributed to private-local by enlarging MLC
- Shared LLC retained to benefit shared data and to enable capacity balancing

High hit rate on low-latency MLC increases performance

8.3.2 Re-architected L2/L3 cache hierarchy (2)

Re-balancing the L2/L3 cache hierarchy [32]

- On-chip cache balance shifted from shared-distributed (prior architectures) to private-local (Skylake architecture):
 - Shared-distributed
 → shared-distributed L3 is primary cache
 - Private-local → private L2 becomes primary cache with shared L3 used as overflow cache
- Shared L3 changed from inclusive to non-inclusive:
 - Inclusive (prior architectures) → L3 has copies of all lines in L2
 - Non-inclusive (Skylake architecture) → lines in L2 may not exist in L3

8.3.2 Re-architected L2/L3 cache hierarchy (3)

Changing the L3 cache inclusion policy from inclusive to non-inclusive -1

Example of an inclusive three-level cache-architecture [31]

L1 Cache: 32KB

L2 Cache: 256KB

32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32
32	32	32	32	32	32	32	32	32	32

L3 Cache: 2.5 MB

8.3.2 Re-architected L2/L3 cache hierarchy (5)

Assessing and use of cache inclusion policies

Intel's L3 cache in their Skylake-SP line

Inclusion policies of cache hierarchies in Intel's Core 2 lines [33]

	L2 to L1	L3 to L2	L4 to L3
Core 2/ Penryn	Shared Non-inclusive		
Nehalem/ Westmere	Private Non-inclusive	Shared Inclusive	
Sandy Bridge/ Ivy Bridge	Private Non-inclusive	Shared Inclusive Sliced	
Haswell Broadwell	Private Non-inclusive?	Shared Inclusive Sliced	Shared Non-inclusive
Skylake/ Kaby Lake	Private Non-inclusive?	Shared Inclusive Sliced	Shared Non-inclusive
Skylake-SP Core-X	Private Non-inclusive	Shared Non-inclusive Sliced	??

All caches are write-back caches (WB) (except of the L1 Instruction cache). L3 cache tags show which L1 and/or L2 caches hold the cache line

Changing the L3 cache inclusion policy from inclusive to non-inclusive -1

- In the previous Skylake generation the inclusive L3 cache amounts to up to 2.5 MB/core whereas the private L2 cache to 0.25 MB core and the L2 cache needs only about 10 % of the L3 cache space.
- By contrast, the Skylake-SP processor has an L3 cache of only 1.375 MB/core whereas the private L2 caches amount to 1 MB/core.
- Consequently, in the Skylake-SP processor the inclusive cache policy could not be used for the L3 cache, it had to be modified to the non-inclusive policy since then the L2 cache content is only partly included in the L3 cache.

Non-inclusive vs. inclusive L3 [32]

- 1. Memory reads fill directly to the L2, no longer to both the L2 and L3
- 2. When a L2 line needs to be removed, both modified and unmodified lines are written back
- Data shared across cores are copied into the L3 for servicing future L2 misses

Cache hierarchy architected and optimized for data center use cases:

- Virtualized use cases get larger private L2 cache free from interference
- Multithreaded workloads can operate on larger data per thread (due to increased L2 size) and reduce uncore activity

8.3.3 Mesh architecture

8.3.3 Mesh architecture (1)

8.3.3 Mesh architecture [34]

Ring Architecture

2009-2017+

Mesh Architecture

New in 2017

Broadwell-EX's ring architecture vs. Skylake-SP's mesh architecture [32]

Broadwell EX 24-core die

Skylake-SP 28-core die

CHA – Caching and Home Agent ; SF – Snoop Filter; LLC – Last Level Cache; SKX Core – Skylake Server Core; UPI – Intel^o UltraPath Interconnect

8.3.3 Mesh architecture (3)

Interconnection style of Intel's many core and multi-core processors

8.3.3 Mesh architecture (5)

Principle of the implementation of a 4x4 2D mesh and the router [45] (Only the North and West links are shown the South and East links are indicated)

Principle of the implementation of a 5x5 crossbar [45]

8.3.3 Mesh architecture (7)

Benefits and the drawback of the mesh architecture

Benefit

- Lower latencies
- Lower latencies result in higher performance

Drawback

• Higher power consumption, as shown in the next Figures.

8.3.3 Mesh architecture (8)

Power distribution between the data ring and the cores in the 6-core i7-8700K (Coffee Lake) processor [46]

8.3.3 Mesh architecture (9)

Power distribution between the data mesh and the cores in the 6-core i9-7980XE (Skylake-SL-based Core-X processor [46]

Main features of the models of the Kaby Lake-X and Skylake-X Series [47]

	Intel Basin Falls X299 Processors, Launched in July 2017				
	i5-7640X	i7-7740X	i7-7800X	i7-7820X	i9-7900X
	Kaby Lake-X	Kaby Lake-X	Skylake-X	Skylake-X	Skylake-X
Cores	4C/4T	4C/8T	6C/12T	8C/16T	10C/20T
Base Clock	4.0 GHz	4.3 GHz	3.5 GHz	3.6 GHz	3.3 GHz
Turbo Clock	4.2 GHz	4.5 GHz	4.0 GHz	4.3 GHz	4.3 GHz
TurboMax Clock	N/A	N/A	N/A	4.5 GHz	4.5 GHz
L2 Cache	256 KB	per core		1 MB per core	
L3 Cache	6 MB	8 MB	8.25 MB	11 MB	13.75 MB
PCIe lanes	:	16	2	8	44
Mem. channels		2		4	
Memory freq.	DDR4	4-2666	DDR4-2400	DDR4-	2666
TDP	11	2 W		140 W	
Socket	LGA	2066		LGA 2066	
Price (1k)	\$242	\$339	\$389	\$599	\$999

Power consumption of Intel's HEDs and AMD's DTs [31]

Power: Total Package, Prime95 (Full Load) Watts (Lower is Better)

Note that mesh-based Skylake-X processors have a large power consumption.

8.3.4 Improved Turbo Boost Max technology 3.0

8.3.4 Improved Turbo Boost max technology 3.0 -1 [38]

- The Turbo Boost max technology 3.0 was introduced in the Broadwell-E line.
- It aims at increasing the performance of single threaded applications.
- To achieve this, during processor testing Intel determines the max. clock speeds of all cores and arrranges the cores into a list according to their max clock speed.

For single threaded workloads the fastest core (termed the favored core) will be activated.

• By contrast, the Improved Turbo Boost max technology 3.0 improves both single core and dual core performance by allocating the two fastest cores if two cores are needed, as indicated in the next Figure.

Its use requires an appropriate driver, OS version and BIOS.

Improved Turbo Boost max technology 3.0 -2 [38]

Updated Intel® Turbo Boost Max Technology 3.0 improves single- and dual-core performance in the new Intel® Core™ X-series processors¹

1. Only available on SKUs 7820X, 7900X, 7920X, 7940X, 7960X, 7980XE , 7800X

Note that Improved Turbo Boost max technology 3.0 is supported only by the Skylake-X based models.

8.4 Performance assessment of the Skylake X-Series

8.4 Performance assessment of the Skylake X-Series (1)

Comparing the single threaded IPC values of Skylake-SP/-X and desktop Skylake-S processors¹ [31]

	Intel SKL-SP vs SKL-S IPC Single Threaded Tests	
AnandTech.com		Gain over SKL-S
Wab	Sunspider	1.8%
VVED	Kraken	6.8%
	PDF Opening	1.1%
System	FCAT	1.4%
	Dolphin v5	5.7%
Rendering	Cinebench 15 ST	2.4%
	3DPM v1 ST	-4.1%
Legacy	Cinebench 11.5 ST	-1.4%
	Cinebench 10 ST	-1.6%
Overall	9 Tests	1.3%

¹Actually, the comparison was made between the Skylake-S based Core i5-6600 and the Skylake-SP based Core i9-7900X while running both processors with only 4 cores, without hyperthreading, at 3 GHz on all cores with no Turbo active.

The benchmark scores show no notable differences betwwen the IPC values of the tested architectures.

8.4 Performance assessment of the Skylake X-Series (2)

Comparing the multi-threaded IPC values of Skylake-SP/-X and desktop Skylake-S processors¹ [31]

	Intel SKL-SP vs SKL-S IPC Multi Threaded Tests	
AnandTech.com	Multi Hileddeu Tests	Gain over SKL-S
Wab	Octane	5.2%
vveb	WebXPRT 15	-2.8%
Curtom	3DPM v2.1	-0.3%
System	DigiCortex v1.20	1.1%
	Corona 1.3	17.3%
	Blender 2.78	3.5%
Rendering	LuxMark CPU C++	-0.1%
	POV-Ray 3.7.1b4	1.3%
	Cinebench 15 MT	4.0%
	7-Zip	1.4%
Counds	HandBrake 264-LQ	-2.1%
Encode	HandBrake 264-HQ	-8.0%
	HandBrake 265-4K	-1.2%
	3DPM v1 MT	1.4%
	x264 HD 3 Pass 1	0.9%
Legacy	x264 HD 3 Pass 2	1.4%
	Cinebench 11.5 MT	1.8%
	Cinebench 10 MT	5.2%
Overall	18 Tests	1.7%

Again, the benchmark scores show no notable differences between the IPC values of the tested architectures.

8.4 Performance assessment of the Skylake X-Series (3)

Benchmark results for the multi-threaded Cinebench R15 showing the superiority of Intel's 18-core Core i9-7980XE over AMD's 16-core ThreadRipper 1950X [48]

8.4 Performance assessment of the Skylake X-Series (4)

Benchmark results for gaming (Ashes of Singularity) showing the superiority of Intel's 18-core Core i9-7980XE over AMD's 16-core ThreadRipper 1950X [48]

Performance assessment of Intel's Core i9-7980XE [49]

- This model (and also the Skylake-X Series) has an impressive performance when compared with AMD's 1. generation ThreadRipper models or Intel's preceding Core i7-6950X, as indicated in the above Figures.
- Nevertheless, this advantage vanished vs. AMD's 2. gen. ThreadRipper line, as the next Figure shows.

8.4 Performance assessment of the Skylake X-Series (6)

Benchmark results for the multi-threaded Cinebench R15 showing the superiority of AMD's 2. gen. 32-core ThreadRipper 2990WX over Intel's 18-core Core i9-7980XE [50]

9. The Caby Lake X-Series
9. The Kaby Lake X-Series -1

1. gen.				2. gen.	3. gen.	4. gen.	5. gen.	
Core 2 New Microarch. 65 nm	Penryn New Process 45 nm	Nehalem New Microarch. 45 nm	West- mere New Process 32 nm	Sandy Bridge ^{New} Microarch. 32 nm	Ivy Bridge New Process 22 nm	Haswell New Microarchi. 22 nm	Broad- well New Process 14 nm	
тоск	ΤΙϹΚ	тоск	ТІСК	тоск	ΤΙϹΚ	тоск	ΤΙϹΚ	
(2006)	(2007)	(2008)	(2010)	(2011)	(2012)	(2013)	(2014)	
6. gen.	7. gen.	8. gen. ¹ 9. gen.		. ¹ Ast fc	¹ Astonishingly, the 8th generation encompass four processor lines, as follows:			
Skylake New Microarch.	Kaby Lake New Microarch.	Kaby Lake R/G Coffee Lake Cannon Lake	Kaby Lake R/G Coffee Lake Cannon Lake		Kaby Lake Refr Kaby Lake G wi Coffee Lake and 10 nm Cannon	esh ith AMD Vega g d Lake designs [graphics [218].	
14 nm	14 nm	14/10 nm	14 nm					
тоск	тоск	тоск	тоск					
(2015)	(2016)	(2017/18)	(2018)		Refresh			

9. The Caby Lake X-Series (2)

The Kaby Lake X-Series -2 [47]

- Announced in 5/2017 launched in 6/2017.
- Manufactured on the 14 nm+ technology.
- Intel introduced initially two 4-core models based on the Kaby Lake-S design while disabling the integrated graphics and using the spared power headroom to raise the core frequency.

They are implemented as LCC dies (Low-Core-Count) (note that this die configuration includes up to 10 cores in the Kaby Lake-S line).

• They do not have any bundled cooler, but Intel is promoting its own TS13X liquid cooled loop for the Core-X Series.

9. The Caby Lake X-Series (3)

Main features of the models of the Kaby Lake X-Series [47]

Intel Basin Falls X299 Processors, Launched in June 2017							
	i5-7640X	i7-7740X	i7-7800X	i7-7820X	i9-7900X		
	Kaby Lake-X	Kaby Lake-X	Skylake-X	Skylake-X	Skylake-X		
Cores	4C/4T	4C/8T	6C/12T	8C/16T	10C/20T		
Base Clock	4.0 GHz	4.3 GHz	3.5 GHz	3.6 GHz	3.3 GHz		
Turbo Clock	4.2 GHz	4.5 GHz	4.0 GHz	4.3 GHz	4.3 GHz		
TurboMax Clock	N/A	N/A	N/A	4.5 GHz	4.5 GHz		
L2 Cache	256 KB	per core	1 MB per core				
L3 Cache	6 MB	8 MB	8.25 MB	11 MB	13.75 MB		
PCIe lanes	1	L6	2	8	44		
Mem. channels		2	4				
Memory freq.	DDR4	-2666	DDR4-2400	DDR4-2400 DDR4-2666			
TDP	11	2 W	140 W				
Socket	LGA	2066		LGA 2066			
Price (1k)	\$242	\$339	\$389	\$599	\$999		

Contrasting Kaby Lake-X models to related high performance Kaby Lake ones [51]

	Cor	e i7	Core i5		
	Core i7-7740X	Core i7-7700K	Core i5-7640X	Core i5-7600K	
	Kaby Lake-X	Kaby Lake	Kaby Lake-X	Kaby Lake	
Socket	LGA2066	LGA1151	LGA2066	LGA1151	
Cores/Threads	4/8	4/8	4/4	4/4	
Base Frequency	4.3 GHz	4.2 GHz	4.0 GHz	3.8 GHz	
Turbo Frequency	4.5 GHz	4.4 GHz	4.2 GHz	4.2 GHz	
TDP	112 W	91 W	112 W	91 W	
L2 Cache		256 K	B/core		
L3 Cache	1 8	МΒ	6 MB		
DRAM Channels		:	2		
DRAM Support	DDR4-2666	DDR4-2400	DDR4-2666	DDR4-2400	
Graphics	None	HD 620	None	HD 620	
Price	\$3	39	\$242		
Launched	Soon	Jan 2017	Soon	Jan 2017	

9. The Caby Lake X-Series (5)

Main differences of the Kaby Lake X-Series vs. the prior K-tagged Kaby Lake line

- Kaby Lake-X parts are essentially mainstream K-tagged Kaby Lake parts with disabled graphics and utilizing the resulting power headroom for higher clock frequencies.
- The differences are in more details as follow:
 - support for higher grade DDR4-2666 memory, over the DDR4-2400 on the prior platform
 - slightly (+100 or 200 MHz) higher base and Turbo frequencies but higher TD: 112W vs. 91 W
 - no integrated graphics and
 - use of the LGA2066 socket instead of the LGA1151 socket,

as seen in the above Table.

9. The Caby Lake X-Series (6)

Chipset Diagram of MSI's X299 XPower Gaming AC, their high-end MB

9. The Caby Lake X-Series (7)

Comparing CineBench ST benchmark results for related Kaby Lake-X and Kaby Lake models [47]

9. The Caby Lake X-Series (8)

Comparing CineBench MT benchmark results for related Kaby Lake-X and Kaby Lake models [47]

Remarks

- AMD's Ryzen 7 processors shown above have 8 cores whereas Ryzen 5 processors only 6.
- By contrast, Intel's Kaby Lake-X processors include as few as 4 cores.
- This gives an explanation for the benchmark results shown.

9. The Caby Lake X-Series (9)

Comparing CineBench benchmark results for related Kaby Lake-X and Kaby Lake models [47]

Above benchmark results show that the Kaby Lake-X models have only about 5 % more performance than the prior Kaby Lake ones whereas they consume more power (112 W vs. 91 W and do not provide integrated graphics.

In addition, it can be noted that AMD's related Ryzen models have lower single thread but higher multi-threaded performance (due to theirs higher core count (8 vs. 4)).

Remark on the CineBench benchmark

- It is a real-world cross-platform test suite that evaluates CPU and graphics performance for 3D content creation.
- It is based on MAXON's award-winning animation software Cinema 4D.

10. The Skylake X Refresh Series

10. The Skylake X Refresh Series

Introduced in 10/2018 as an update of the Skylake-X Series.

Manufactured on the 14 nm++ technology.

Main goal of the line is to provide a competitor versus AMDs 2. gen. TreadRipper line.

Main features of the Skylake X Refresh models [41]

PROCESSOR NUMBER	BASE CLOCK SPEED (GHZ)	INTEL® TURBO BOOST TECHNOLOGY 2.0 FREQUENCY (GHZ) ¹⁷	INTEL [®] TURBO BOOST MAX TECHNOLOGY 3.0 FREQUENCY (GHZ) ¹⁸	CORES/ THREADS	TDP	Intel® Smart Cache	UNLOCKED ⁴	PLATFORM PCIE 3.0 LANES	MEMORY SUPPORT	INTEL® OPTANE [™] MEMORY SUPPORT ⁶	RCP PRICING (USD 1K)
Intel® Core™ i9-9980XE X-series	3.0	4.4	4.5	18/36	165W	24.75 MB	~	Up to 68	Four channels DDR4-2666	 Image: A second s	\$1,979
Intel® Core™ i9-9960X X-series	3.1	4.4	4.5	16/32	165W	22 MB	 Image: A second s	Up to 68	Four channels DDR4-2666	~	\$1,684
Intel® Core™ i9-9940X X-series	3.3	4.4	4.5	14/28	165W	19.25 MB	 Image: A second s	Up to 68	Four channels DDR4-2666	~	\$1,387
Intel® Core™ i9-9920X X-series	3.5	4.4	4.5	12/24	165W	19.25 MB	 ✓ 	Up to 68	Four channels DDR4-2666	 Image: A second s	\$1,189
Intel® Core™ i9-9900X X-series	3.5	4.4	4.5	10/20	165W	19.25 MB	 Image: A second s	Up to 68	Four channels DDR4-2666	×	\$989
Intel® Core™ i9-9820X X-series	3.3	4.1	4.2	10/20	165W	16.5 MB	 Image: A second s	Up to 68	Four channels DDR4-2666	 ✓ 	\$889
Intel [®] Core [™] i7-9800X X-series	3.8	4.4	4.5	8/16	165W	16.5 MB	×	Up to 68	Four channels DDR4-2666	×	\$589

tel* processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families.

I processors are lead-free (per EU RoHS directive July 2006) and halogen free (residual amounts of halogens are below November 2007 proposed IPC/JEDEC J-STD-709 standards)

I processors support Intel® Virtualization Technology (Intel® VT-x)

Other names and brands may be claimed as the property of others.

he new desktop processors include protections for the security vulnerabilities commonly referred to as "Spectre," "Meltdown" and "L1TF." These protections include a combination of the hardware design changes e announced earlier this year as well as software and microcode updates.

Speculative side channel variant Spectre V2 (Branch Target Injection) = Microcode + Software

Speculative side channel variant Meltdown V3 (Rogue Data Cache Load) = Microcode

Speculative side channel variant Meltdown V3a (Rogue System Register Read) = Microcode

Speculative side channel variant V4 (Speculative Store Bypass) = Microcode + Software

Speculative side channel variant L1 Terminal Fault = Microcode + Software

Contrasting main features of Intel's Skylake-X and Skylake-X Refresh models [53]

Intel Basin Falls Skylake-X Refresh									
Anano	dTech	Cores	TDP	Freq	L3 (MB)	L3 Per Core	DRAM DDR4	PCle	
i9-9980XE	\$1979	18 / 36	165 W	3.0 / 4.5	24.75	1.375	2666	44	
i9-9960X	\$1684	16/32	165 W	3.1 / 4.5	22.00	1.375	2666	44	
i9-9940X	\$1387	14 / 28	165 W	3.3 / 4.5	19.25	1.375	2666	44	
i9-9920X	\$1189	12/24	165 W	3.5 / 4.5	19.25	1.604	2666	44	
i9-9900X	\$989	10 / 20	165 W	3.5 / 4.5	19.25	1.925	2666	44	
i9-9820X	\$889	10 / 20	165 W	3.3 / 4.2	16.50	1.650	2666	44	
i7-9800X	\$589	8 / 16	165 W	3.8 / 4.5	16.50	2.031	2666	44	
	Skylake-X								
i9-7980XE	\$1999	18 / 36	165 W	2.5/4.4	24.75	1.375	2666	44	
i9-7960X	\$1699	16/32	165 W	2.8/4.4	22.00	1.375	2666	44	
i9-7940X	\$1399	14 / 28	165 W	3.1 / 4.4	19.25	1.375	2666	44	
i9-7920X	\$1199	12/24	140 W	2.9/4.4	16.50	1.375	2666	44	
i9-7900X	\$999	10 / 20	140 W	3.3 / 4.5	13.75	1.375	2666	44	
i7-7820X	\$599	8 / 16	140 W	3.6 / 4.5	11.00	1.375	2666	28	
i7-7800X	\$389	6 / 12	140 W	3.5 / 4.0	8.25	1.375	2400	28	

Main improvements of the Skylake X Refresh Series over the Skylake X-Series

A comparison of the related data reveals the following improvements (see above Table):

- partly significantly higher clock rates, e.g. +500 MHz for the i9-990XE vs. the i9-7980XE,
- slightly higher Turbo 2.0 and Turbo 3.0 frequencies (mostly +100 or +200 MHz) (not indicated in the Table comparing both series))
- higher TDP values for lower core (8-12 core) models (165 W vs. 140 W),
- larger per-core L3 sizes for lower core (8-12 core) models (1.604 to 2.031 MHz vs. 1.375 MHz),
- more PCIe 3.0 lanes for the 8-core model (44 lanes vs. 28 lanes).

10. The Skylake X Refresh Series (5)

Sources of frequency improvements of the Skylake X Refresh line vs the Skylake X-Series[54]

There are two main sources to be mentioned:

- a) improved manufacturing technology (14 nm++ instead of 14 nm+) and
- b) using Solder Thermal Interface Material (STIM) between the CPU die and the integrated head spreader,

as detailed next.

a) Improved manufacturing technology (14 nm++ instead of 14 nm+) Manufacturing technology of Intel's Core processors (generations 2 to 9) [54]

Generation	Microarchitecture	Process node	Release year
2.	Sandy Bridge	32 nm	2011
3rd	Ivy Bridge	22nm	2012
4th	Haswell	22nm	2013
5th	Broadwell	14nm	2014
6th	Skylake	14nm	2015
7th	Kaby Lake	14nm+	2016
8th	Kaby Lake-R Coffee Lake-S Kaby Lake-G Kaby Lake-X Skylake-X Coffee Lake-U/H Whiskey Lake-U Amber Lake-Y Cannon Lake-U	14nm+ 14nm++ 14nm+ 14nm+ 14nm+ 14nm++ 14nm++ 14nm+ 10nm	2017 2017-2018 2018 2017 20017 2018 2018 2018 2018 2018 2017*
9th	Skylake-X Refresh Coffee Lake Refresh	14 nm++ 14nm**	2018 2018
	Ice Lake (Consumer)	10nm?	2019?
Unknown	Cascade Lake (Server) Cooper Lake (Server) Ice Lake (Server)	14nm** 14nm** 10nm	2018 2019 2020

Improvements of the power/performance curve with updated 14 nm technology [55] -1

- Skylake-X was manufactured on the 14 nm+ node whereas Skylake-X Refresh processors on the 14 nm++ node.
- This results in the following improvements:

Improvements of the power/performance curve with updated 14 nm technologies [55] -2

The power/performance curves of the 14 nm+ and 14 nm++ technologies indicate the following improvements over the 14 nm and 14 nm+ technologies: (assuming the highest performance model):

	Power consumption reduction for the same performance vs. the 14 nm technology (approximately)
14 nm+	35 %
14 nm++	52 %

	Performance increase for the same power consumption vs. the 14 nm technology (approximately)
14 nm+	16 %
14 nm++	26 %

	Power consumption reduction for the same performance vs. the 14 nm+ technology (approximately)
14 nm++	17 %

	Performance increase for the same power consumption vs. the 14+ nm technology (approximately)
14 nm++	10 %

10. The Skylake X Refresh Series (9)

b) using Solder Thermal Interface Material (STIM) between the CPU die and the integrated head spreader,

- In a processor package there is a layer between the CPU die and the headspreader, often implemented as an Integrated head Spreader (HIS).
- This layer is made up of a Thermal Interface Material (TIM) (see Figure).
- The task of the TIM is to transfer the heat away from the processor die to the headspreader and eventually to the processor cooler.

Figure: The Thermal Interface Material (TIM) between the IHS (Integrated heat Spreader and the processor die [56]

• The Thermal Interface may be implemented either as a layer of cheap thermal paste or as a more costly indium-tin soldering.

Benefits and drawbacks of the main implementation options of TIM

Type of TIM	Benefit	Drawback
Paste	Lower costLongevity	Worse heat conductivity
Soldered (Bonded)	 Better heat conductivity This results in larger power headroom and better overclocking capability 	Higher costShorter lifecycle

Note that more costly soldered (bonded) interfaces provide a better heat conductivity and thus result in a larger power headroom that may be converted into higher clock frequency.

On the other hand, a soldered (bonded) thermal interface has a shorter lifecycle since the soldered implementation results in higher thermal tensions during usage (in thermal cycles) than the pasted one.

Pasted (glued) CPU package and integrated heat Spreader (HIS) after separation [56]

The Figure shows the gray colored glue that holds the IHS to the CPU package.

10. The Skylake X Refresh Series (12)

Use of a pasted or soldered (bonded) heat conducting layer between the CPU die and the integrated heat spreader in Intel's and AMD's processor sockets [36]

Thermal Interface								
Int	el	Celeron	Pentium	Core i3	Core i5	Core i7/i9	HEDT	
Sandy Bridge	LGA1155	Paste	Paste	Paste	Bonded	Bonded	Bonded	
Ivy Bridge	LGA1155	Paste	Paste	Paste	Paste	Paste	Bonded	
Haswell / DK	LGA1150	Paste	Paste	Paste	Paste	Paste	Bonded	
Broadwell	LGA1150	Paste	Paste	Paste	Paste	Paste	Bonded	
Skylake	LGA1151	Paste	Paste	Paste	Paste	Paste	Paste	
Kaby Lake	LGA1151	Paste	Paste	Paste	Paste	Paste	-	
Coffee Lake	1151 v2	Paste	Paste	Paste	Paste	Paste	-	
CFL-R	1151 v2	?	?	?	K models	: Bonded	-	
			AN	/ID				
Zambezi	AM3+	Bon	ded	Carrizo	AM4	Bonded		
Vishera	AM3+	Bon	ded	Bristol R	AM4	Bonded		
Llano	FM1	Pa	ste	Summit R	AM4	Bonded		
Trinity	FM2	Pa	ste	Raven R	AM4	Paste		
Richland	FM2	Pa	ste	Pinnacle	AM4	Bonded		
Kaveri	FM2+	Paste / Bonded*		TR	TR4	Bonded		
Carrizo	FM2+	Pa	ste	TR2	TR4	Bon	ded	
Kabini	AM1	Pa	ste					

Some Kaveri Refresh models were bonded

10. The Skylake X Refresh Series (13)

Use of STIM (Solder Thermal Interface Material) in Intel's 9th generation Coffee Lake Refresh S line [36]

All three models introduced in the Coffee lake Refresh S Series make use of STIM that is Solder-based Thermal interface Material to improve heat conductivity between the CPU die and the integrated heat spreader (HIS), as indicated below.

Figure: Introduction of STIM in the Coffee Lake Refresh S series to improve heat conductivity [36]

10. The Skylake X Refresh Series (14)

Comparing main features of Intel's Skylake X Refresh and AMD's 2. gen. ThreadRipper processor models [55]

Model	Price	Cores	TDP	Freq	L3 (MB)	L3 Per Core	DRAM DDR4	PCIe					
Intel													
i9-9980XE	\$1979	18 / 36	165 W	3.0 / 4.5	24.75	1.375	2666	44					
i9-7980XE	<u>\$1999</u>	18 / 36	165 W	2.5 / 4,4	24.75	1.375	2666	44					
AMD													
TR 2990WX	<u>\$1799</u>	32 / 64	250 W	3.0 / 4.2	64.00	2.000	2933	60					
TR 2970WX	<u>\$1299</u>	24 / 48	250 W	3.0 / 4.2	64.00	2.000	2933	60					
TR 2950X	<u>\$899</u>	16 / 32	180 W	3.5 / 4.4	32.00	2.000	2933	60					

Addressing Spectre and Meltdown by Intel [36]

Addressing Spectre and Meltdown by Intel											
	AnandTech		SKX-R 3175X	CFL-R	Cascade Lake	Whiskey Lake	Amber Lake				
Spectre	Variant 1	Bounds Check Bypass	OS/VMM	OS/VMM	OS/VMM	OS/VMM	OS/VMM				
Spectre	Variant 2	Branch Target Injection	Firmware + OS	Firmware + OS	Hardware + OS	Firmware + OS	Firmware + OS				
Meltdown	Variant 3	Rogue Data Cache Load	Firmware	Hardware	Hardware	Hardware	Firmware				
Meltdown	Variant 3a	Rogue System Register Read	Firmware	Firmware	Firmware	Firmware	Firmware				
	Variant 4	Speculative Store Bypass	Firmware + OS								
	Variant 5	L1 Terminal Fault	Firmware	Hardware	Hardware	Hardware	Firmware				

CFL-R: Coffee Lake Refresh SKX-R: Skylake-X Refresh

Intel's Core X-Series Refresh (Basin Falls Refresh) platform [41]

10. The Skylake X Refresh Series (17)

Contrasting Intel's i9-7980XE and i9-9980XE CineBench R15 single core benchmark result with those of AMD's Threadripper models [49]

10. The Skylake X Refresh Series (18)

Contrasting Intel's i9-7980XE and i9-9980XE CineBench R15 single core benchmark result with those of AMD's Threadripper models [49]

10. The Skylake X Refresh Series (19)

Contrasting Intel's i9-9980XE HandBrake (Video encoding) benchmark result with those of AMD's Threadripper models [49]

10. The Skylake X Refresh Series (20)

Total system power consumption (Watts) of Intel's i9-7980XE and i9-9980XE and AMD's ThreadRipper models [49]

Performance assessment of Intel's Skylake X-Series Refresh models [49]

- As long as Intel's Skylake-X models were superior vs. AMD's 1. gen. ThreadRipper models, AMD's 2.gen. ThreadRipper models are simply far better value for content creation (2950X) and 3D modeling tasks (WX-Series), as seen in the above Figures.
- Nevertheless, for converting videos from one format to another by e.g. HandBrake (see preceding Figure), or for 4K video export by Adobe Premier Pro, Intel's 18-core Skylake X-Series Refresh i9-9980XE outperforms AMD's 2. gen. ThreadRipper models.

Remarks

For heavily threaded workloads Intel announced in 10/2018 a workstation oriented 28-core processor, the Xeon 3175X, as seen below.

It is based on the Xeon Skylake-SP 8180 server processor and needs the LGA 3647 socket. The Xeon 3175W is unlocked, it is clocked at 3.1 GHz base and 4.3 GHz boost and has a TDP of 255W,

Figure: Intel's Xeon 3175X workstation platform [41]

11. References

- [1]: Singhal R., "Next Generation Intel Microarchitecture (Nehalem) Family: Architecture Insight and Power Management, IDF Taipeh, Oct. 2008, http://intel.wingateweb.com/taiwan08/ published/sessions/TPTS001/FA08%20IDFTaipei_TPTS001_100.pdf
- [2]: Intel Xeon Processor 7500 Series, Datasheet Volume 2, March 2010 http://www.intel.com/Assets/PDF/datasheet/323341.pdf
- [3]: Kurd N. A. & all: A Family of 32 nm IA Processors, IEEE Journal of Solide-State Circuits, Vol. 46, Issue 1., Jan. 2011, pp. 119-130
- [4]: Kahn O., Piazza T., Valentine B.: Technology Insight: Intel Next Generation Microarchitecture Codename Sandy Bridge, IDF 2010 extreme.pcgameshardware.de/.../281270d1288260884-bonusmaterial-pc- gameshardware-12-2010-sf10_spcs001_100.pdf
- [5]: Wikipedia: Sandy Bridge, http://en.wikipedia.org/wiki/Sandy_Bridge
- [6]: http://ark.intel.com
- [7]: Weatherstone R., Intel Core i7-3960X Extreme Edition Processor (Sandy Bridge-E) Review, Nov. 14 2011, Vortez, http://www.vortez.net/articles_pages/intel_core_i7_ 3960x_extreme_edition_processor_sandy_bridge_e,2.html
- [8]: Shimpi A. L., Intel Core i7 3960X (Sandy Bridge E) Review: Keeping the High End Alive, Nov. 14 2011, AnandTech, http://www.anandtech.com/show/5091/intel-core-i7-3960xsandy-bridge-e-review-keeping-the-high-end-alive/4
- [9]: Intel X79 Express Chipset, http://www.intel.com/content/www/us/en/chipsets/ performance-chipsets/x79-express-chipset.html

- [10]: Haynes D.: 2012 Socket Guide, Aug. 4 2012, http://www.ocmodshop.com/cpu-socket-guide-2012/lga2011/
- [11]: Intel Core i7 Processor Family for the LGA-2011 Socket, Datasheet, Vol.1, Nov. 2012, http://www.intel.com/content/www/us/en/processors/core/core-i7-lga-2011-datasheetvol-1.html
- [12]: Crijns K., nVidia GeForce GTX 680 Quad-SLI review, Hardware.info, March 23 2012, http://nl.hardware.info/reviews/2641/nvidia-geforce-gtx-680-quad-sli-review-english-version
- [13]: Chiappetta M., Intel Core i7-4960X Ivy Bridge-E CPU Review, Hot Hardware, Sept. 3 2013, http://hothardware.com/Reviews/Intel-Core-i74690X-Extreme-Edition-Ivy-Bridge-E-CPU-Review/?page=2
- [14]: Intel Core i7 High End Desktop Processor Family for Socket LGA-2011, Aug. 2013
- [15]: Pop S., Intel Releases Core i7 Extreme Central Processing Units, Softpedia, Sept. 9 2013, http://news.softpedia.com/news/Intel-Releases-Core-i7-Extreme-Central-Processing-Units-381369.shtml
- [16]: Shimpi A.L., Intel Core i7 4960X (Ivy Bridge E) Review, AnandTech, Sept. 3 2013, http://www.anandtech.com/show/7255/intel-core-i7-4960x-ivy-bridge-e-review
- [17]: Hruska J., Core i7-4960X Ivy Bridge-E review: Intel's Great Limp Forward, ExtremeTech, Sept. 3 2013, http://www.extremetech.com/gaming/165498-core-i7-4960x-ivy-bridge-ereview-intels-great-limp-forward

- [18]: Mouthaan M., Intel Haswell-E slides published; DDR4 and octa-cores, Hardware Info, June 16 2013, http://us.hardware.info/news/35581/intel-haswell-e-slides-publishedddr4-and-octa-cores
- [19]: Cutress I., The Intel Haswell-E CPU Review: Core i7-5960X, i7-5930K and i7-5820K Tested, AnandTech, Aug. 29 2014, http://www.anandtech.com/show/8426/the-intel-haswell-ecpu-review-core-i7-5960x-i7-5930k-i7-5820k-tested
- [20]: Intel Core i7-900 Desktop Processor Extreme Edition Series, http://ark.intel.com/products/series/39599/Intel-Core-i7-900-Desktop-Processor-Extreme-Edition-Series
- [21]: Wikipedia, LGA 2011, https://en.wikipedia.org/wiki/LGA_2011#cite_note-38
- [22]: Kirsch N., Intel Core i7-975 Extreme Edition Processor Review, Legit Reviews, June 9 2009, http://www.legitreviews.com/intel-core-i7-975-extreme-edition-processor-review_986
- [23]: Intel X58 Express Chipset, Product Brief, 2008, http://www.intel.com/Assets/PDF/prodbrief/x58-product-brief.pdf
- [24]: Shimpi A.L., The Core i7 980X Review: Intel's First 6-Core Desktop CPU, AnandTech, March 11 2010, http://www.anandtech.com/show/2960
- [25]: Page M., Gigabyte GA-X79-UD5 Intel X79 LGA2011 Motherboard In-Depth Review, PCStats, July 27 2013, http://www.pcstats.com/articleview.cfm?articleid=2647&page=6
- [26]: Intel Core i7-6950X 10-Core CPU Review: Broadwell-E Takes Flight, Hot Hardware, http://hothardware.com/gallery/Article/2470?image=big_broadwell-e-die-map.jpg&tag=popup
- [27]: Cutress I., The Intel Broadwell-E Review: Core i7-6950X, i7-6900K, i7-6850K and i7-6800K Tested, AnandTech, May 31 2016, http://www.anandtech.com/show/10337/the-intelbroadwell-e-review-core-i7-6950x-6900k-6850k-and-6800k-tested-up-to-10-cores/2
- [28]: Kirsch N., Intel Core i7-6950X Processor Review 10-core Broadwell-E Benchmarked, Legit Reviews, May 31 2016, http://www.legitreviews.com/intel-core-i7-6950xprocessor-review-broadwell-e-benchmarked_181875
- [29]: Ung G. M., Intel Broadwell-E Core i7-6950X Review: The first 10-core enthusiast CPU is a beast, PC World, May 30 2016, http://www.pcworld.com/article/3075433/computers/ intel-broadwell-e-core-i7-6950x-review-the-first-10-core-enthusiast-cpu-is-a-monster.html
- [30]: Wanzi K., What you need to know about Intel's new X299 platform, Hardware Zone, June 23 2017, https://www.hardwarezone.com.sg/feature-what-you-need-know-aboutintels-new-x299-platform
- [31]: Cutress I., The Intel Skylake-X Review: Core i9 7900X, i7 7820X and i7 7800X Tested, AnandTech, June 19 2017, http://www.anandtech.com/print/11550/the-intel-skylakexreview-core-i9-7900x-i7-7820x-and-i7-7800x-tested
- [32]: Kumar A., Trivedi M., Intel Xeon Scalable Processor Architecture Deep Dive, June 12 2017, https://www.primeline-solutions.de/files/intel-xeon-scalable-architecture-deep-dive_1.pdf
- [33]: Chennupaty S., Jiang H., Sreenivas A., Technology insight: Intel's Next Generation 14 nm Microarchitecture for Client and Server, IDF 2014 SPCS002, San Francisco, 2014, https://intel.activeevents.com/sf14/connect/sessionDetail.ww?SESSION_ID=1204

- [34]: Mouthaan M., Intel Haswell-E slides published; DDR4 and octa-cores, Hardware Info, June 16 2013, http://us.hardware.info/news/35581/intel-haswell-e-slides-publishedddr4-and-octa-cores
- [35]: Intel Xeon processor E3-1200 v3 Product Family and the Emergence of Graphics in the Cloud, June 3 2013, http://www.yumpu.com/en/document/view/18758369/cover-slide-title-intel-newsroom
- [36]: Cutress I., The Intel 9th Gen Review: Core i9-9900K, Core i7-9700K and Core i5-9600K Tested, AnandTech, Oct. 19, 2018, https://www.anandtech.com/print/13400/intel-9th-gen-core-i9-9900k-i7-9700k-i5-9600k-review
- [37]: X299 XPOWER GAMING AC, Intel X299 Motherboards, https://www.msi.com/Motherboard/X299-XPOWER-GAMING-AC.html#productFeature-section
- [38]: New Intel Core X-Series Processor Family, Aug. 2017, https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/08/intel-corex-series-processor-overview.pdf
- [39]: Products formerly Broadwell E, Intel, https://ark.intel.com/products/codename/80341/Broadwell-E
- [40]: Kampman J., Intel boosts the high-end desktop with its Broadwell-E CPUs, Tech Report, May 31 2016, https://techreport.com/review/30204/intel-boosts-the-high-end-desktopwith-its-broadwell-e-cpus
- [41]: Schiesser T., Our take on Intel's newly announced Skylake-X Refresh and Xeon W-3175X 28-core, Techspot, Oct. 10 2018, https://www.techspot.com/news/76855-our-take-intelnewly-announced-skylake-x-refresh.html

- [42]: Cutress I., Intel Announces Basin Falls: The New High-End Desktop Platform and X299 Chipset, AnandTech, May 30 2017, https://www.anandtech.com/show/11461/intelannounces-basin-falls-the-new-highend-desktop-platform-and-x299-chipset
- [43]: Cutress I., The Intel Core i9-7980XE and Core i9-7960X CPU Review Part 1: Workstation, AnandTech, Sept. 25 2017, https://www.anandtech.com/show/11839/intel-core-i9-7980xe-and-core-i9-7960x-review
- [44]: Frequently Asked Questions about Intel Turbo Boost Max Technology 3.0, Intel, Support, https://www.intel.com/content/www/us/en/support/articles/000021587/processors.html
- [45]: Park D., Vaidya A., Kumar A., Azimi M., MoDe-X: Microarchitecture of a Layout-Aware Modular Decoupled Crossbar for On-Chip Interconnects, IEEE Transactions on Computers, Vol. 63, No. 3, March 2014
- [46]: Cutress I., The AMD Threadripper 2990WX 32-Core and 2950X 16-Core Review, AnandTech, Aug. 13 2018, https://www.anandtech.com/show/13124/the-amd-threadripper-2990wxand-2950x-review
- [47]: Cutress I., Intel Announces X299, Skylake-X, and Kaby Lake-X Release Schedule: Pre-Orders June 19th, Availability June 26th, AnandTech, June 13 2017, https://www.anandtech.com/show/11542/intel-announces-x299-skylakex-and-kabylakex-time-line-preorders-and-availability
- [48]: Leather A., Intel Core i9-7980XE Review: The AMD Threadripper Killer Has Arrived, Forbes, Sept. 25 2017, https://www.forbes.com/sites/antonyleather/2017/09/25/intel-core-i9-7980xe-review-the-amd-threadripper-killer-has-arrived/#ef31aab48109

- [49]: Leather A., Intel Core i9-9980XE Review: 18-Core Monster Processor Tested Against AMD's Threadripper, Forbes, Nov. 29 2018, https://www.forbes.com/sites/antonyleather/2018/ 11/29/intel-core-i9-9980xe-review-18-core-monster-processor-tested-against-amdsthreadripper/#47e7899b50d7
- [50]: O Donnell D., OC'd Threadripper 2990WX beat 5.0GHz and topped Cinebench scores...with caveats, Notebookcheck, Aug. 10, 2018, https://www.notebookcheck.net/OC-d-Threadripper-2990WX-beat-5-0GHz-and-topped-Cinebench-scores-with-caveats.321206.0.html
- [51]: Cutress I., Shilov A., Intel Announces Kaby Lake-X Processors: High-End Desktop Getting the Latest Microarchitecture, AnandTech, May 30 2017, https://www.anandtech.com/show/11463/intel-announces-kaby-lakex-processors-highenddesktop-getting-the-latest-microarchitecture
- [52]: Cutress I., The Intel Kaby Lake-X i7 7740X and i5 7640X Review: The New Single-Threaded Champion, OC to 5GHz, AnandTech, July 24 2017, https://www.anandtech.com/show/11549/the-intel-kaby-lake-x-i7-7740x-and-i5-7640xreview-the-new-single-thread-champion-oc-to-5ghz/2
- [53]: Cutress I., Intel's Basin Falls Skylake-X Refresh: Core i9-9980XE with up to 15% Better Power Efficiency, AnandTech, Oct. 8 2018, https://www.anandtech.com/show/13402/intel-basin-falls-refresh-core-i9-9980xe
- [54]: Cutress I., Intel Announces 9th Gen Core CPUs: Core i9-9900K (8-Core), i7-9700K, & i5-9600K, AnandTech, Oct. 8 2018, https://www.anandtech.com/show/13401/intel-9th-gen-cpus-9900k-9700k-9600k

- [55]: Cutress I., The Intel Core i9-9980XE CPU Review: Refresh Until it Hertz, AnandTech, Nov. 13 2018, https://www.anandtech.com/show/13539/the-intel-core-i9-9980xe-review
- [56]: Bonshor G., Delidding The AMD Ryzen 5 2400G APU: How To Guide and Results, AnandTech, May 10 2018, https://www.anandtech.com/show/12640/amd-ryzen-delidding

PC market share AMD vs Intel (PCs in use rather than PCs purchased)

Updated 10th of June 2016

http://www.cpubenchmark.net/market_share.html

Discrete Desktop GPU Market Shares of AMD and NVIDIA

AMD: Analyst Has A Point, It's Just Irrelevant Jun. 14, 2017 Kumguat Research

https://seekingalpha.com/article/4081506-amd-analyst-point-just-irrelevant?auth_param=djq9a:1ck34vp:ce0143e2957dadb7340d15be406350e8