Obuda University				Institute for Cyber-physical Systems			
John von Neumann Faculty of Informatics							
Name and code: Advanced Computer Architectures (NIXKA1EBNE) Credits: 2							
			-				
Computer Science and Engineering BSc programme 2019/20 year II. semester							
Subject lecturers: Zsolt Bringye							
Prerequisites (with							
code):							
Weekly hours: 2	Lecture: 2		Seminar.: 0		Lab. hours: 0		Consultation: 0
Way of	written exam						
assessment:							
Course description:							

Goal: During the semester the students get to know the design and implementation possibilities of the CPU and GPU level parallel program execution.

Course description:

Topics covered in lecture

- Designing a single cycle and a multicycle processor
- Functional parallelism
- Data parallelism
- Classification of parallel architectures
- Basic parallel techniques
- Vector architectures
- SIMD ISA extensions
- **GPUs**
- Multiprocessor systems (incl. cache coherency and heterogenous systems)
- Motherboards, parts of motherboards

Homework (optional)

To give a deeper understanding of the material the students allowed to form groups of two and create a homework project during the semester which they will present at the end of the semester.

Lecture schedule					
Education week	Topic				
1.					
2.	A short review (topics from the previous semester)				
3.	Designing a single cycle processor				
4.	Designing a multicycle processor				
5.	Types of parallelism, classification of parallel architectures				
6.	Basic parallel techniques				
7.	Basic parallel techniques (contd.)				
8.	Vector architectures				
9.	Break				
10.	SIMD ISA extensions, GPUs				
11.	Multiprocessor systems				
12.	Multiprocessor systems (contd.)				
13.	Motherboards				
14.	Presentation of homework				
Midterm requirements					

Type of exam Written exam. The final score consist of: • the score of the exam (up to 100 points)

• optionally the score of the presentation (up to 20 points)

The requirement of the pass mark is 51 points.

Type of replacement

References

Mandatory: See in the e-learning system.

Recommended:

- Advanced Computer Architectures by D. Sima, T. Fountain and P. Kacsuk
- Computer Architecture by J.L. Henessy and D. A. Patterson
- Digital Design and Computer Architecture by S. L. Harris and D. M. Harris