Obuda University John von Neumann Faculty of Informatics			Institute of Applied Mathematics		
Name and code:			Credits:		
Geometric and H	Function	al inequalities	2019/20 year II. semester		
Subject lecturers	· Prof d	r. habil. Alexandru Ki	ristóly		
		I. Habii. Alexandru K	listaly		
Prerequisites (with code):		Calculus I, II			
Weekly hours:	Lectur	e: Seminar.:	Lab. hours:	Consultation:	
Way of			·		
assessment:					
		Course d	lescription:		
Goal: to provide	on intro	duction into goomatri	and functional inequali	tion origing in Goomotric	

Goal: to provide an introduction into geometric and functional inequalities arising in Geometric Analysis and Sobolev spaces.

Course description: isoperimetric inequalities; symmetrisation; optimal mass transport; sharp Sobolev inequalities; influence of curvature.

Lecture schedule								
Education week	k		Торіс					
1.	Brunn-Minkov	wski and i	soperimetric inequalities					
2.	Optimal mass	transport						
3.	Monge-Kanton	1	blem					
4.	Symmetrisation							
5.	Inequality of Polya-Szego							
6.	·	Hardy-Littlewood-Polya						
7.	Sharp Sobolev inequality I: Talenti approach							
8.	Hardy inequal	•						
9.		Pauli-Weyl uncertainty principle						
10.		zis-Poincare-Vazquez inequality						
11.	1	Sobolev inequality II: Cordero-Erausquin-Nazaret-Villani approach						
		f curvature I: negative curvature						
13.	Influence of curvature II: positive curvature							
14.	14. Application to elliptic problems (Dirichlet, Schrodinger)							
Midterm requirements								
Ed	ucation week	Торіс						
	Final grade calculation methods							
	Achieved		Grade					
89%-10)%	excellent (5)					
76%-		<%	good (4)					
	63%-75<	<%	average (3)					
	51%-62<		satisfactory (2)					
	0%-50<	%	failed (1)					

Type of exam						
Project presentation & Written exam						
Type of replacement						
Project presentation						
References						
Mandatory:						
1 Ghoussoub N	Moradifam A Functional Inequalities: New Perspectives and New					

- 1. Ghoussoub N., Moradifam A., Functional Inequalities: New Perspectives and New Applications, AMS, 2013.
- 2. Kristály A., Sharp uncertainty principles on Riemannian manifolds: the influence of curvature. J. Math. Pures Appl. (9) 119 (2018), 326–346.

Recommended:

- 1. Kristály A., Radulescu V., Varga Cs., Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Enciclopedia of Mathematics and its Applications. No 136, 2010.
- 2. Balogh Z., Kristály A., Sipos K., Geometric inequalities on Heisenberg groups. Calc. Var. Partial Differential Equations 57 (2018), no. 2, Art. 61, 41 pp.