Obuda University John von Neumann Faculty of Informatics		nformatics	Institute of Applied Mathematics				
Name and code: NIMFM1SANK Fundamen			al Mathematical Methods Credits: 4				
name and code: MINIFWIISANK Fundamer				Urtuits. 7			
		2019/20 year II. semester					
Subject lecturers: Dr Kósi Krisztián							
Prerequisites (wit	h						
code):							
Weekly hours:	Lecture: 1	Seminar.:	Lab. hours: 1	Consultation:			
Way of	Exam						
assessment:							
Course description:							
<i>Goal</i> : The main aim is to provide the Students with the most important mathematical methods							
on which the modern nonlinear control applications are based. Besides the purely							
mathematical point of view actual implementation issues are considered, too.							
Course description: The beginning of the course, concentrates on mathematical methods. It							
shows the connections between classical math subjects (like calculus, linear algebra), and the							
modern nonlinear control theory. Then shows detailed examples, from theory to							
implementation, using two modern methods (VSSM, RFPT). The last part shows some another							
interesting example, how mathematics is related to computer science, like fractals, genetic							
algorithms, multidimensional scaling.							
<i></i>		wB.					

Lecture schedule					
Education week	Торіс				
1.	Mathematical background				
2.	Mathematical background				
3.	Introduction to LaTeX and Julia language				
4.	Laplace Transform, First Order Differential Equations				
5.	Second Order Differential Equations				
6.	Series of Functions				
7.	1st. Midterm				
8.	Metric Space, Numerical Methods				
9.	Fixed Point Iteration, Modelling and Simulation				
10.	Introduction to non-linear robotics, Lyapunov's stability definitions and theorems				
11.	Robust Control, VSSM				
11.	Adaptive Control, RFPT				
12.	2nd. Midterm				
13.	Retake Midterm, Presentations				
Midterm requirements					
Ed	ucation week Topic				
7	Julia, Laplace, ODE, Series of Functions				
13	Metric Space, Num. Methods, Fixed point iteration, nonlinear robotics, VSSM, RFPT				

	Final grade o	calculation methods
	Achieved result	Grade
1	88%-100%	excellent (5)
,	75%-88<%	good (4)
	62%-75<%	average (3)
[:	5§%-62<%	satisfactory (2)
	0%-50<%	failed (1)

<u>Signature requirements:</u> Attend at least four lessons and four labs., write both midterm.

Regular exam.

Can be get <u>Offerd grad</u>:

- The midter result is at least 63%.
- Create a home project: solve a non-trivial problem, code it in Julia, create minimum 5 page paper in IEEE format, and held a 10 min long presentation in the last class.

page paper in IEEE format, and held a 10 min long presentation in the last class.					
Type of exam					
written exam					
Type of replacement					
The worst midterm can be retaken in the last week.					
References					
Mandatory:					
Lecuter Notes					
Recommended:					
System and Control Theory - József K. Tar - László Nádai - Imre J. Rudas. TYPOTEX 2012, ISBN 978-963- 279-676-5					
Applied Nonlinear Control, Slotine and Li, Prentice-Hall 1991					
M. Oberguggenberger, A. Ostermann.: Analysis for Computer Scientists. In: Undergraduate Topics in					
Computer Science. Springer-Verlag Ltd. London, 2011					
Elements of the Theory of Functions and Functional Analysis - A.N. Kolmogorov, S.V. Fomin					