Obuda University John von Neumann Faculty of Informatics			Applied Mathematics Institute		
Name and code: Intelligent Development tools NMXIF1SMNE Credits: 3					
			2019/2	20 year II. semester	
Subject lecturers: Dr Kósi Krisztián					
Prerequisites (with					
code):					
Weekly hours:	Lecture	e: Seminar.:	Lab. hours: 2	Consultation:	
Way of		·	·		
assessment:					
Course description:					
Goal: To help the Students understand nonlinear control problems, and help them in					
obtaining some coding experience in simulating such programs.					
Course description	on:				
In Robotic specialization, the non-linear control is the key. This course shows the fundamental					

In Robotic specialization, the non-linear control is the key. This course shows the fundamental basics of that field from a Computer Science perspective. This course reveals certain significant elements of the ample spectrum of that field, from the theory to actual coding.

Lecture schedule						
Education week		Торіс				
1.	Mathematical	Mathematical background				
2.	Mathematical	Mathematical background				
3.	Introduction to Julia language, Laplace Transform					
4.	First Order Differential Equations					
5.	Second Order Differential Equations					
6.	Series of Functions					
7.	1st. Midterm	1st. Midterm				
8.	Metric Space, Numerical Methods					
9.	Fixed Point It	eration, Modelling and Simulation				
10. Introduction theorems.		to non-linear robotics, Lyapunov's stability definitions and				
11. Robust Cor		rol, VSSM				
12.	Adaptive Con	trol, RFPT				
13. 2nd. Midterm						
14.	Retake Midter	rm				
Midterm requirements						
E	Education week	Topic				
7 13		1 st . Midterm				
		2 nd . Midterm				
14	4	Retake Midterm				
3.	,7,14	Mathematical background test.				

Final grade calculation methods

Achieved result	Grade
88%-100%	excellent (5)
75%-88<%	good (4)
62%-75<%	avrage (3)
50%-62<%	satisfactory (2)
0%-50<%	failed (1)

The Mathematical background test is about Bachelor level math knowledge, it has to be 50% to pass, and it has three attempts, at 3rd.7th. 14th. weeks. If someone fails it three times, will be denied from the course. If someone absent at seminars more than four times will also denied from the course. If someone did not write both test will be denied from the course. The evaluation mark will be determined on the basis of the results of two midterm tests. The worst midterm can be retaken in the last week.

Type of exam

Type of replacement

At the last week the worst midterm test can be retaken.

References

Mandatory: Lecture Notes

Recommended:

System and Control Theory - József K. Tar - László Nádai - Imre J. Rudas. TYPOTEX 2012, ISBN 978-963-279-676-5

Applied Nonlinear Control, Slotine and Li, Prentice-Hall 1991

M. Oberguggenberger, A. Ostermann.: Analysis for Computer Scientists. In: Undergraduate Topics in Computer Science. Springer-Verlag Ltd. London, 2011

Elements of the Theory of Functions and Functional Analysis - A.N. Kolmogorov, S.V. Fomin