Obuda University				Institute of Applied Mathematics			
John von Neumann Faculty of Informatics							
Name and code: NMXGI1SMNE				Credits:4			
Machine Intelligence 2019/20 year II. semester							
Subject lecturers: Marta Takacs							
Prerequisites (with code):							
		-					
Weekly hours:3	Lectur	re:3	Seminar.:		Lab. hours:	Consultation:	
Way of	· · · · · ·						
assessment:	exam						
Course description:							
<i>Goal</i> : The goal of the course is to give introduction to the soft computing technologies, fuzzy							
systems, neural networks and hybrid systems. The acquired topics qualify the students to model							
relevant problems in fuzzy rule base environment, with different operator families, and to							
construct neural networks taking in account different learning rules. The students will be familiar							
with ANFIS system construction not only based on theoretical background of them, but also							
using related software tools (Matlab for example). The student becomes familiar with the basic							
machine learning rules and how to apply them in the classification, cluster and big data							
algorithms.							
<i>Course description:</i> Fuzzy set theory. Fuzzy based approximate reasoning and fuzzy control.							
Neural networks, Anfis systems. Learning rules. Classification and cluster algorithms. Big data							
- basic theoretical background.							
– basic uicorcucai background.							

Lecture schedule					
Education week	Topic				
1.	An introduction to fuzzy sets. Operations on fuzzy sets				
2.	Fuzzy relations, Fuzzy implications				
3.	The theory of approximate reasoning				
4.	Fuzzy rule-based systems, Fuzzy reasoning scheme				
5.	Fuzzy logic controllers. Efficiency of different fuzzy systems				
6.	1 st meantime exam				
7.	Neural networks. The perceptron learning rule				
8.	The delta learning rule with semilinear activation function. The winner- take-all learning rule				
9.	The error back-propagation learning rule. Efficiency of neural networks				
10.	Implementing fuzzy IF-THEN rules by trainable neural nets. Fuzzy neuron. Hybrid neural nets. ANFIS architecture.				
11.	Neuro-fuzzy classifiers. Big data algorithms				
12.	2 nd meantime exam				
13.	Individual project presentation				
14.	Replacements possibility				

Midterm requirements

Two meantime exams, related to the theoretical basics (20+20 points). Individual project, constructed ANFIS model, or other MI based model with a description of the system in a paper of about 5-10 pages. The project should be presented as an oral presentation at the 13th week. (at best 10 points). For the semester verification (subscription) it is necessary to upload the project documentation on the Moodle system and to achieve the 30% of the points on the meantime exams.

The student can prepare/develop homework during the semester (and upload them to the Moodle system), which can be counted towards the end-of-year grade. 2020. 02. 24.

Final grade calculation methods

The final grade is calculated as follows:

Meantime exams: 2*20 points, individual project - at best 10 points, (homework at best extra 40 points).

Final exam - at best 50 points.

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam

Oral/written answer from the theoretical background (at best 50 points, 70% of the whole result). **Type of replacement**

At the first week of the exam period the student has possibility to present his missed individual project and meantime exams.

References

Obligatory:

http://uni-obuda.hu/users/fuller.robert/nfs.html

Recommended:

- 1. Carlsson, Christer, Fuller, Robert, *Fuzzy Reasoning in Decision Making and Optimization*, ISBN 978-3-7908-1805-5
- 2. The weekly recommended web sources related to the actual topics