Obuda University John von Neumann Faculty of Informatics				Institute of Applied Mathematics				
Name and code: Fourier analysis and series NI					A1PMNE	Credits	s: 3	
Applied Mathematics MSc					2019/20 year II. semester			
Subject lecturers: Dr. Zoltán Léka								
Prerequisites (with code):		Interpolation and approximation						
Weekly hours: L	lectur	re: 2 Seminar.: -			Lab. hours: -		Consultation: -	
Way of assessment:	Exam							
Course description:								
Goal:								
Acquiring the basic knowledge and applications related to Fourier analysis								
Course description:	1							

Fourier expansion of periodic functions. The space of square-integrable functions. Complete orthonormal basis. Boundary value problems, separation of variables, superposition principle. Haar and Rademacher functions. Wavelets. Fourier transform and inversion theorem.

Lecture schedule								
Education wee	ek	Торіс						
1.	Fourier expa	Fourier expansion of periodic functions						
2.	Fourier coeff	Fourier coefficients of odd or even functions. Examples						
3.	Fourier serie	Fourier series on intervals						
4.	The Hilbert s	The Hilbert space of square-integrable functions						
5.	Complete or	Complete orthonormal basis						
6.	Convergence	Convergence and completeness						
7.	1 st classroom	om test						
8.	Boundary va principle	Boundary value problems, separation of variables, superposition principle						
9.	Heat equatio	n. and wave equation.						
10.	Orthogonal p	hogonal polynomials.						
11.	Haar and Ra	ademacher functions, wavelets						
12. Fourier tra		nsform and inversion theorem.						
13.	2 nd classroor	n test						
14.	Summary; re	writing a classroom test; evaluation.						
Midterm requirements								
	Education week	Торіс						
	7	1 st classroom test: Fourier series and						
		orthonormal systems of functions.						
	13	2 nd classroom test: Boundary value						
		problems, Haar systems.						
	14	Rewriting a classroom test						

Final grade calculation methods							
A shiound requit	Crada						
Achieved result	Grade						
89%-100%	excellent (5)						
76%-88<%	good (4)						
63%-75<%	average (3)						
51%-62<%	satisfactory (2)						
0%-50<%	failed (1)						
Тур	oe of exam						
Written exam.							
Type of	f replacement						
One classroom test can be rewritten on th	ie last week.						
Re	eferences						
A. Vretblad, Fourier Analysis and its Applic	ations, Springer, 2003						
Recommended:							
Stein and Weiss, Introduction to Fourier A	Analysis on Euclidean S	spaces					