Óbuda University					Institute of Software Engineering
John von Neumann Faculty	of Informati	cs			Institute of Software Engineering
Name and code: Probabil	lity theory an	d the basics o	f mathematica	l st	atistics (NMXVS1PMNE) Credits: 3
Computer Science MSc			i	Jay	time 2020/21 year I. semester
Subject lecturers: László Cs	sink				
Prerequisites:					
(with code)					
Weekly hours:	Lecture: 2	Seminar: 1	Lab. hours: ()	Consultation: 0
Way of assessment:	Examination	n			
			ourse descript	ior	n
Goal: To lay the foundation	-	<u>v</u> v			
_		nised in the	Internet. Stu	der	nts will get an invitation to join classes via video
conferencing in the schedule					
- · · ·					Random variables and their properties; probability
	·				of distributions (generating functions, characteristic
	/			-	pendence; covariance matrix. General definition and
		-	• -		of convergence; Borel-Cantelli lemmas; laws of large
	,				space; sample; statistics; ordered sample; empirical
					d consistent estimator; sufficiency, completeness and
÷ .					likelihood estimation, method of moments, method
	estimation.	Hypothesis te	esting; confider	.ce	intervals. NeymanPearson lemma; parametric and
nonparametric tests.					

	Lecture schedule					
Education	Торіс					
week						
1	Kolmogorov probability space, law of total probability, Bayes' theorem.					
2	Random variables and their properties; probability distribution function; expectation, variance and moments.					
3	Transforms of distributions (generating functions, characteristic function, Laplace transform).					
4	Joint distributions; random vectors; independence; covariance matrix.					
5	General definition and properties of conditional expectation; law of total expectation.					
6	Types of convergence; Borel-Cantelli lemmas; laws of large numbers; sums of random variables; central limit					
	theorems.					
7	Continuation of lecture 6.					
8	Statistical space; sample; statistics; ordered sample; empirical distribution function; Glivenko-Cantelli theo-					
	rem.					
9	Unbiased, efficient and consistent estimator; sufficiency, completeness and ancillarity; Rao-Blackwell theorem.					
10	Continuation of lecture 9.					
11	Estimation techniques, maximum-likelihood estimation, method of moments, method of least squares.					
12	Hypothesis testing; confidence intervals					
13	Neyman-Pearson lemma; parametric and nonparametric tests					
14	Summary					
	Midterm requirements					
	Midterm Test Scheduling					
Education	Topic					
week						
	Midtorm grade calculation methods					
Midterm grade calculation methods						
	Method of replacement					
cf. TVSZ	A					
	Type of exam					
Written exan	n in the Moodle system					
	Exam grade calculation methods					

	Achieved result	Grade
	89-100%	excellent (5)
	76-88%	good(4)
	63-75%	average (3)
	51- $62%$	weak (2)
	0-50%	failed (1)
	Refere	nces
Obligatory:		
Janko Gravner: Lecture Notes for	Introductory Probability.	
https://www.math.ucdavis.edu/ gr	avner/MAT135A/resources/	'lecturenotes.po
Recommended:		
Gut, A.: An Intermediate Course of	of Probability, 2nd ed.; Sprin	ger; 2009.
Gut, A.: Probability : A Graduate	Course; Springer; 2005.	
Others:		