Obuda University			Software Engineering Institute				
John von Neumann Faculty of Informatics							
Name and code:			Credits:				
NIWPP1HBNE	Python for	r Programmers					
			2021/22 year I. semester				
Subject lecturers: Gábor Kertész, Peter Juma Ochieng							
Prerequisites (wit	h						
code):							
Weekly hours:	Lecture: 0	Seminar.:0		Lab. hours: 3	Consultation:0		
Way of	mid-term mark						
assessment:							
		Course de	escrip	tion:			
Goal: Provide an introduction to the Python programming language for computer scientists with							
a solid knowledge of algorithms and software development.							
<i>Course description:</i> The course provides an in-depth introduction to the Python programming							
language for those who have a solid knowledge of programming. The course starts with a brief							
overview of the structure, syntax and building blocks of the Python environment, including							
data types, data structures and modern tools. This is followed by introducing a few popular							
libraries, including numpy and pandas. In the second half of the semester, students will learn							
about object-orien	nted program	nming in Python,	parall	elization and test-d	riven development.		

Lecture schedule						
Education week	Topic					
1.	Introduction, overview, development environments, basic syntax					
2.	List, tuple, dictionary, set. Functions, lambda functions, list					
<i>L</i> .	comprehension.					
3.	IPython. Jupyter Notebooks, Jupyter Lab. Virtual environments.					
4.	Introduction to NumPy, ndarray.					
5.	Introduction to pandas, dataframe, series.					
6.	Files: read/write. Pickle. Exception handling.					
7.	OOP in Python: classes, inheritance, polymorphism.					
8.	Custom modules.					
9.	Parallelism in Python. Synchronization.					
10.	Basics of testing. Unit testing in Python.					
11.	Practice, use-cases.					
12.	Midterm					
13.	Midterm re-take					
Midterm requirements						
	Education week Topic					
12	2 th week practical test					

Final grade calculation methods						
	Achieved result	Grade				
	89%-100%	excellent (5)				
	76%-88<%	good (4)				
	63%-75<%	average (3)				
	51%-62<%	satisfactory (2)				
	0%-50<%	failed (1)				
	Tyj	pe of exam				
Practical test to sol	ve a given task using Pyt	hon.				
	U L	f replacement				
Retake of the midte	erm on the last week.					
	R	eferences				
Mandatory:						
Recommended: Sla	atkin, Brett. Effective pyt	hon: 90 specific ways to w	vrite better python.			
Addison-Wesley P	,					
		tel. Python for Programme	ers. Prentice Hall, 2019.			
Danjou, Julien. Ser	ious Python. No Starch F	Press, 2018.				