Obuda University	
John von Neumann Faculty of	
Informatics	

Institute of Applied Mathematics

Name and code:

Credits:

Asymptotic analysis of special functions I NMVAS1PMNE

202<u>1/22 year I. semester</u>

Subject lecturers: Prof. dr. habil. Arpad Baricz						
Prerequisites (with code):		Calculus I, II				
Weekly	Lectu	re:	Seminar.:	Lab. hours:	Consultation:	
hours:						
Way of						
assessment:						
Course description:						
Goal: to provide an introduction into the asymptotic analysis of the most						
well-known special functions of classical analysis						
Course description: this course gives a basic introduction into the basics of						
the asymptotic analysis of the special functions, which arise in applied						
mathematical sciences. It is our aim to present the most important						
methods of asymptotic analysis through examples of known special						

methods of asymptotic analysis through examples of known special functions, like Bessel functions, Euler's gamma function, Riemann's zeta function and others.

Lecture schedule						
Education week	Торіс					
1.	Bessel functions					
2.	Airy functions					
3.	Orthogonal polynomials					
4.	Hypergeometric functions					
5.	Asymptotic analysis of integrals					
6.	The method of partial integration					
7.	Laplace method					
8.	The Watson lemma					
9.	Lagrange inversion theorem					
10.	The stationary phase method					
11.	The steepest descent method					
12.	The saddle point method					
13.	The WKB method					
14.	Singularities and other asymptotic methods					
Midterm requirements						
Education week		Торіс				

Finalgrade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam Project presentation & Written exam Type of replacement Project presentation

References

Mandatory:

- 1. F.W.J. Olver, *Asymptotics and Special Functions*, Academic Press, 1974.
- 2. N.M. Temme, Special Functions, John Wiley & Sons, 1996.
- 3. R. Wong, Asymptotic Approximations of Integrals, SIAM, 2001.
- 4. G.E. Andrews, R. Askey, R. Roy, *Special Functions*, Cambridge Univ. Press, 1999. Recommended:
 - 1. J.D. Murray, Asymptotic Analysis, Springer-Verlag, 1984.
 - 2. P.D. Miller, *Applied Asymptotic Analysis*, American Mathematical Society, 2006.