Obuda University John von Neumann Faculty of Informatics

Institute of Applied Mathematics

Name and code:

Credits:

Calculus of variations and applications NMVVS1PMNE

2021/22 year I. semester

Subject lecturers: Prof. dr. habil. Alexandru Kristály					
Prerequisites (with code):		Calculus I, II			
Weekly	Lecture:		Seminar.:	Lab. hours:	Consultation:
hours:					
Way of					
assessment:					
Course description:					
Goal: to provide an introduction into some basic problems formulated in					
terms of the Calculus of Variations.					
Course description: key problems are presented from Calculus of Variations as the					
isoperimetric problem, Euler-Lagrange equation, brachystochron problem, optimization					
problems (Torricelli points), minimization arguments, variational principles (Ekeland,					
Borwein-Preiss, Ricceri), critical points, minimax theorems, applications in PDEs.					

Lecture schedule					
Education week	Торіс				
1.	Introduction in Calculus of Variations: examples				
2.	Isoperimetric problems				
3.	Brunn-Minkowski inequalities: a quick tour				
4.	Euler-Lagrange equation				
5.	Brachystochron problem (classical and the tunnel problem)				
6.	Weber-type problems: Torricelli points				
7.	Weber-type problems on non-euclidean spaces: influence of gravity				
8.	Busemann-type inequalities: Thales theorem and applications				
9.	Minimization arguments: compact case				
10.	Minimization arguments: non-compact case				
11.	Variational principles (Ekeland, Borwein-Preiss, Ricceri)				
12.	Critical points				
13.	Minimax theorems				
14.	Applications in elliptic PDEs (existence results)				
Midterm requirements					
Education w	reek Topic				

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam Project presentation & Written exam **Type of replacement** Project presentation

References

Mandatory:

Kristály A., Radulescu V., Varga Cs., Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Enciclopedia of Mathematics and its Applications. No 136, 2010. Recommended:

Struwe M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth edition. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 34. Springer-Verlag, Berlin, 2008.