Obuda University John von Neumann Faculty of Informatics

Institute of Applied Mathematics

Name and code:

Analysis NMXAN1PMNE

Credits:

2021/22 year I. semester

Subject lecturer	s: Dr. Zoltán I	.éka			
Prerequisites (w	vith				
code):					
Weekly hours:	Lecture: 2	Seminar.: 1	Lab. hours: 0	Consultation: 0	
Way of	Final grade haard on two midtarm evens				
assessment:	Final grade based on two midterm exams				
		Course des	cription:		
Goal: Our goal is	s to introduce	the fundamental	concepts of functional	analysis and Lebesgue	
integration. Thes	se concepts ar	re crucial in the	modern study of prob	bability theory, (partial)	
differential equat	ions, and quar	tum theory, for in	stance.		

Course description: The problem of the measure. Lebesgue integral, convergence theorems. Lebesgue and Riemann integrals. Study of Hilbert spaces with orthogonal systems, duality.

Lecture schedule				
Education v	veek Topic			
1.	Introdu	Introduction to measure theory		
2.	Exterio	Exterior measure and Lebesgue measure of R ^d		
3.	Measu	Measurable functions and their properties		
4.	Lebesg	Lebesgue integral		
		Convergence theorems: Fatou lemma, Monotone convergence theorem and Lebesgue's dominated theorem		
6.	6. 1 st midterm exam			
7. General measures and the Lebesgue Lp-spaces				
8.	Differe	Differentiation: absolute continuous functions		
9.	Functi	Functions of bounded variations		
10.	Introdu	Introduction to Hilbert spaces, normed spaces		
11.	Geome	Geometry of Hilbert spaces, inner product spaces		
12.	12. Duality, orthogonal basis of L2 spaces, integral operators, kernels		ors, kernels	
13.	13. 2^{nd} midterm exam			
14.	14. Resit exam			
Midterm requirements				
I	Education week	Торіс		
-				

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam

To get the signature, one needs to accomplish at least 50% of the weekly home assignments. There will be two written midterms.

Type of replacement

At the last week of the semester one can have a resit exam.

References

Mandatory:

E. Stein: Real Analysis

Recommended:

Rynne and Youngson: Linear Functional Analysis