Obuda University Institute of Applied Mathematics John von Neumann Faculty of Informatics Institute of Applied Mathematics Name and code: Credits:3 Differential equations NMXDE1PMNE 2021/22 year I. semester Subject lecturers: Dr. Zoltán Léka Subject lecturers: Dr. Zoltán Léka
John von Neumann Faculty of Informatics Credits:3 Name and code: Credits:3 Differential equations NMXDE1PMNE 2021/22 year I. semester
Differential equations NMXDE1PMNE 2021/22 year I. semester
2021/22 year I. semester
2021/22 year I. semester
Subject lecturers: Dr. Zoltán Léka
Subject lecturers: D1. Zonan Leka
Prerequisites (with
code):
Weekly hours: Lecture: 2 Seminar.: 1 Lab. hours: 0 Consultation: 0
Way of
Two midterm exams + written exam
Course description:
Goal: To provide an overview of the fundamental concepts of planar dynamical systems
Moreover, the course discuss the methods of calculus of variations with applications i
mechanics, and elements of PDEs (heat and wave equations in Euclidean spaces)
Course description: Dynamics of first and second order differential equations, stability of fixe
points through linearization. Energy methods and Lyapunov direct methods. Periodic solutions
limit cycles. Calculus of variations. Hamiltonian and Lagrangian systems, Legendre transform
Elements of PDEs: method of characteristics, heat equation, wave equation.

Lecture schedule					
Education week	Topic				
1.	First-order ordinary differential equations: linear, exact and separable systems				
2.	Dynamics of first order autonomous differential equations, fixed points.				
3.	Dynamics of second order systems: Jacobian matrix, characterization of fixed points through linearization, stability				
4.	Energy methods, Lyapunov s theorems on stability				
5.	Periodic solutions, limit cycles: divergence criterion, Poincaré-Bendixson theorem				
6.	1st written exam				
7.	Introduction to variational calculus: brachistochrone problem, Euler-Lagrange equations				
8.	Calculus of variations in mechanics, Hamiltonian systems				
9.	Hamiltonian and Lagrangian systems, Legendre transformation				
10.	Partial differential equations: method of characteristics				
11.	Second order partial differential equations, classification				
12.	Laplace operator, Dirichlet energy and the heat equation				
13.	2nd written exam				
14.	Goursat- and Cauchy problems, the wave equation.				
Midterm requirements					
E	ducation week Topic				
	Weekly home assignments in each actual				
	topic				

	Final grade	calculation methods	
	Achieved result	Grade	
	89%-100%	excellent (5)	
	76%-88<%	good (4)	
	63%-75<%	satisfactory (3)	
	51%-62<%	passed (2)	
	0%-50<%	failed (1)	
	Ту	pe of exam	
Written exam			
		of replacement	
One written example	m of the semester can be rej	placed at the final wee	k
	R	eferences	
Mandatory:			
-			

R. Kent Nagle, Edward B. Saff, Arthur David Snider: Foundamentals of Differential Equations and Boundary Value Problems, 8th Edition, Addison-Wesley, 2011.

D. Strogatz: Non-linear dynamics and chaos, Westview Press, 2001.

Recommended:

E. Lieb, M. Loss: Analysis, Amer. Math. Soc., Providence, 2001.

Simon J. Malham: An introduction to Lagrangian and Hamiltonian mechanics, 2016.