Obuda University	
John von Neumann Faculty of Informatics	
Name and code:	

Institute of Applied Mathematics

Credits: 5

Dynamical systems - regular: NAMPD1AENM part time: NAMPD1AEEM

2021/22 year I. semester

Subject lecturers: Vilmos Zoller, dr.habil.					
Prerequisites (with		Differential equations - NAMDE1AENM			
code):					
Weekly hours:	Lecture	: 2(1)	Seminar.: 0	Lab. hours: 2 (1)	Consultation: 0
regular:2/0/2					
part time: 1/0/1					
Way of	avam				
assessment:	exam				
Course description:					
Goal: Introduction to the theory of PDEs and their solution methods with the help of					
generalized functions (distributions).					
Course description: Initial and boundary value problems for hyperbolic and parabolic					
equations, weak solutions to elliptic boundary problems, Generalized functions, Bessel					
functions, fundamental solutions, Cauchy problems.					

Lecture schedule					
Education week	Торіс				
1.	First-order equations, linear in their principal parts.				
2.	Classification of second-order PDEs, linear in their principal parts in two				
	variables. The wave operator and the first-order Klein-Gordon operator.				
3.	The heat operator, the Laplace operator and the Helmholz operator.				
	The Cauchy-Riemann operator and the Schrödinger operator. The				
	Bernoulli-Euler beam operator. Initial and boundary value problems for				
	hyperbolic equations.				
4.	Initial and boundary value problems for parabolic equations. Elliptic				
	boundary problems.				
5.	Metric and topological spaces.				
6.	Topological vector spaces.				
7.	Locally integrable functions, ground functions. Generalized functions				
	(distributions). Singular distributions.				
8.	Derivation of distributions. Multiplication by a smooth function. Direct				
	product of distributions.				
9.	Convolutions of functions and distributions. Rapidly decreasing and				
	slowly increasing functions and distributions. Fourier transforms of				
	functions. Inhomogeneous linear coordinate transformation of				
	distributions.				
10.	Fourier transforms of distributions. Fundamental solutions, particular				
	solutions to inhomogeneous equations.				
11.	Fundamental solutions to ordinary linear differential operators with				
	constant coefficients. Fundamental solutions to first-order PDEs.				
	Fundamental solutions to the wave operator and the one-dimensional				
	Klein-Gordon operator. Bessel functions of order 0. Fundamental solution				
	to the heat operator.				

12.	Fundamental solutions to the Laplace operator, the Cauchy-Riemann operator and the Helmholz operator.					
13.	Cauchy problems.					
14.	Preliminary exam.					
	Midtern	n requirements				
	Final grade	calculation methods				
	Achieved result	Grade				
	85%-100%	excellent (5)				
	70%-84<%	good (4)				
	55%-69<%	average (3)				
	40%-54<%	satisfactory (2)				
	0%-39<%	failed (1)				
	Туј	pe of exam				
written						
Type of replacement						
written						
Keterences						
Obligatory: V.I. Arnold, Lectures on Partial Differential Equations. Springer, Berlin, 2004						
<i>Recommended:</i> T.v. Hill, 1940	7. Kármán, M.A. Biot,	Mathematical Methods	s in Engineering, McGraw-			
V.S: Vladimirov, E	quations of Mathematica	al Physics, Dekker/New	York, 1971			
A.N. Tychonov and A.A. Samarski. Lattar unrefentiar equations of mathematical physics,						

A.N. Tychonov and A.A. Samarski. Partial differential equations of mathematical physic Holden-Day, San Francisco, 1964

Foundations of the Classical Theory of Partial Differential Equations, ed. by Yu.V.Egorov and M.A.Shubin, Encyclopaedia of Mathematical Sciences 30, Springer, 1998