Óbuda University John von Neumann Faculty of Informatics			Institute for Cyber-Physical Systems				
Name and code:				NIEFS2CB1	NE)	Credits: 2	
Computer Science and Engineering BSc				20	2021/22 year II. semester		
Subject lecturers	: Attila I	Farkas					
Prerequisites (wi code):	th						
Weekly hours:	Lectur	e: 0	Seminar.: 0	Lab.	hours: 2	Consultation: 0	
Way of assessment:	mid-term mark						
·	_		Course de	scrintion.		·	

Goal: The main aim of the subject is to get practical skills on cloud computing systems. Besides the public cloud computing services (e.g. Amazon Web Services), there is a special focus on setting up of platform services (e.g. Microsoft Azure) and their access through various interfaces. The students get familiar with the step-by-step deployment and operation of private Infrastructure-as-a-Service clouds particularly based on open-source solutions (e.g. OpenNebula and OpenStack). For demonstration purposes Big Data and IoT (Internet of Things) applications will be presented during the practices.

Course description: Build, operate, and deploy OpenNebula private cloud solution. Build and use of S3 data storage. Cloud orchestration and reference architectures. Deploying and using Docker container technology and Docker Swarm cluster. Creating a distributed NoSQL database on Docker basis.

Lecture schedule			
Education week	ucation week Topic		
1.	1. Introduction		
2.	2. OpenNebula installation		
3.	3. OpenNebula administration		
4.	4. Docker basics		
5.	5. Docker basics #2		
6.	6. Break - National holiday		
7.	7. Docker Swarm basics		
8.	8. Distributed NoSQL database		
9.	9. Cloud orchestration and reference architectures		
10.	10. MinIO – S3 object storage		
11.	11. Break - Eastern Monday		
12.	12. Midterm test		
13.	13. Midterm project presentation		
14. Replacement of midterm test or the presentation			

Midterm requirements

The midterm test has to be passed, and the project work has to be documented and presented.

T.	Λi	٩t٥	rm	tes	te

L		
	Education week	Topic
I	12	Midterm test
I	13	Presentation of project work
I	14	Replacement of midterm test or project work presentation

Final grade calculation methods

Digital education mode:

The midterm test will be held on Moodle platform.

Traditional education mode:

Written, practical midterm test.

In both cases, the completed project work will modify the final result with -1/0/+1 grade.

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of replacement

In the 14th week for the written midterm test or project presentation.

Type of exam

Signature retake exam

Exam grade calculation method

_

References

Mandatory:

The published student material in the Moodle page of the subject

Recommended:

Barrie Sosinsky, Cloud Computing Bible, Wiley, ISBN: 9780470903568 Adrian Mouat, Using Docker, O'Reilly Media, ISBN: 9781491915912

Eben Hewitt, Jeff Carpenter, Cassandra: The Definitive Guide, O'Reilly Media, ISBN: 9781491933664