Óbuda University			Institute of Software Engineering				
John von Neumann Faculty of Informatics							
Name and code: Stochastic processes and their applications (NMXSF1PMNE) Credits: 7						Credits: 7	
Computer Science BSc				Daytime 2021/22 year II. semester			
Subject lecturers: László Csink							
Prerequisites:							
(with code)							
Weekly hours:	Lecture: 2	Seminar: 2	Lab. hours	: 0	Consultation: 0		
Way of assessment:	Examination						
Course description							
Goal: To lay the foundations of mathematical finance.							
Course description: Discrete and continuous Markov chains, martingale theory, stochastic finance, applications.							

	Lecture schedule					
Education						
week	Topic					
1	Moment generating functions.					
2	Computing probability and expectation by conditioning.					
3	Markov Chains: Introduction.					
4	Markov Chains: Classification of States.					
5	Branching Processes.					
6	Markov Chains: Limiting Probabilities.					
7	Markov Chains: Reversibility.					
8	Poisson Processes.					
9	Renewal Processes.					
10	Continuous Time Markov Chains.					
11	Martingales.					
12	Stochastic Finance I.					
13	Stochastic Finance II.					
14	Summary					
	Midterm requirements					
	Midterm Test Scheduling					
Education	on _					
week	Topic					
	Midterm grade calculation methods					
	Wildlerin grade calculation methods					
	Mathad of nonlagoment					
f. TVSZ	Method of replacement					
1. 1 V S Z						
	Type of exam					
Online or wr	tten exam, depending on the pandemic situation.					
	Exam grade calculation methods					
'inal grade o	alculation methods					
	Achieved result Grade					
	89-100% excellent (5)					
	76-88% good (4)					
	63-75% average (3)					
	51-62% weak (2)					
	0-50% failed (1)					
	References					
Obligatory:						
anko Gravn	er: Lecture Notes for Introductory Probability.					
tt==== / /	.math.ucdavis.edu/ gravner/MAT135A/resources/lecturenotes.pdf					

Recommended:

Others:

