Obuda University				Institute of Applied Mathematics				
John von Neumann Faculty of Informatics					institute of Applied Mathematics			
Name and code of subject:					Credits: 4			
Algebra and number theory NMXAS1					r			
Applied Mathematics MSc		Full-time		ie cour	e course 2019/20 academic year, spring			
				_				
Subject lecturers:	dr. Mag	gdolna (Szőke					
Prerequisites (with	h	<u> </u>						
code):		-						
Weekly hours:	Lecture	e:2	Seminar:		Lab. hours:		Consultation:	
Way of	D :1							
assessment:	Final ex	xam	xam					
Course description:								
Goal: Acquirement of basic algebraic and number theoretic notions and theorems, their								
application in exe	ercises.							
Course description: Operations, algebraic structures, basics of group theory, permutation								
groups, Cayley theorem, Lagrange theorem, normal subgroups, factor groups, homomorphisms,								
Isomorphism theorems, Sylow theorems, simple groups, soluble groups, nilpotent groups,								
Abelian groups, composition series, direct products, fundamental theorem of finite Abelian								
groups; free groups, basics of ring theory, commutative rings, ideals, factor rings, principal ideal								
domains, Noetherian rings, integral domains, fields, construction of fields, finite fields, field								
extensions, modules, algebras, basics of number theory, fundamental theorem of arithmetic,								
	-				•			
Euclidean algorithm, congruence, linear congruences, Euler's totient functions, quadratic								
congruences								

Lecture schedule					
Education week	Topic				
1.	Operations, algebraic structures, basics of group theory				
2.	Semigroups, basics of group theory				
3.	Permutation groups, Cayley theorem, Lagrange theorem				
4.	Normal subgroups, factor groups, homomorphisms				
5.	Isomorphism theorems, Sylow theorems				
6.	Simple groups, soluble groups				
7.	Nilpotent groups, Abelian groups, composition series, direct products,				
	Fundamental theorem of finite Abelian groups				
8.	Basics of ring theory, commutative rings, ideals, factor rings				
9.	Principal ideal domains, Noetherian rings				
10.	Integral domains, fields, construction of fields, finite fields, field extensions				
11.	Basic concepts of number theory (in integral domains)				
12.	Fundamental theorem of arithmetic, unique factorisation domains.				
	Euclidean algorithms, Euclidean rings, PID's.				
13.	Rings of polynomials, Gaussian lemma, Schönemann-Eisenstein theorem /				
	Midterm test				
14.	Lie algebras (basic concepts) / Test retake				
Midterm requirements					

Attendance at lessons and seminars is compulsory. Conditions of acquisition of a signature: students are required to write both midterm tests and the sum of their result must be at least 50% of the total 100 points.

Midterm tests schedule					
Education week	Topic				
7.	Midterm test I				
13.	Midterm test II				
14.	Test retake				
	Type of replacement				
The less successful test can be retaken in the last week, as well as a non-written test if a medical					
certificate is preser	nted.				
	Type of exam				
The exam is written and consists of theoretical questions (40pts) and exercises (30pts). 50% of					
the scores must be achieved at each part in order to pass the exam. The final grade is calculated					
from the sum of the scores achieved in the exam and 30% of the scores of the midterm tests as					
follows: 50-61 points: passed (2), 62-73 points: satisfactory (3), 74-85 points: good (4), 86-100					
points: excellent (5					
	References				

Recommended: