Obuda University			Institute of Applied Mathematics			
John von Neumann Faculty of Informatics						
Name and code:			Credits:			
Stochastic Processes II			2021/22 year II. semester			
Subject lecturers:	Prof. d	r. habil. Tibor Pogány				
Prerequisites (with code):		Calculus I, II, Probability theory				
Weekly hours: Lecture		e: Seminar.:	Lab. ho	ours:	Consultation:	
Way of			·			
assessment:						
Course description:						
Goal: to provide	an int	roduction into estima	tion theory -	- interpolation	n, extrapolation and	
filtration of stocha	astic pro	ocesses.				
Course description: weakly stationary stochastic processes, extrapolation and interpolation by						
means of infinite	and fini	te past, filtration of no	ise, Wiener-H	lopf equations	S.	

Lecture schedule Education week Topic						
		Topic				
1. 2.	Stochastic processes	•				
3.	L^2 theory, correlation functions, spectral density Correlation theory, spectral representations					
		Hinčin, Herglotz and Karhunen Cramer theorems				
5.		orphic isometry between $L^2(\Omega)$ and $L^2(R;dF)$				
6.	<u> </u>	apolation, infinite past				
7.	Extrapolation, finite	1				
8.	*	Interpolation, infinite past				
9.		Interpolation, finite past				
10.	Filtration					
11.	Weakly stationary tir	Weakly stationary time series				
12.						
13.	Interpolation, rationa	nal spectral densities				
14.	Filtration, spectral de	nsities				
Midterm requirements						
1	Education week	Торіс				
	 Final grad	le calculation methods				
	8					
	Achieved resul	Grade				
	89%-100%	excellent (5)				
	76%-88<%	good (4)				
	63%-75<%	average (3)				
	51%-62<%	satisfactory (2)				
	0%-50<%	failed (1)				
)—————————————————————————————————————					

Type of exam
Project presentation & Written exam
Type of replacement
Project presentation
References

Mandatory:

- 1. Michelberger Pál, Szeidl László, Várlaki Péter. Alkalmazott folyamatstatisztika és idősor-analízis, Typotex Kiadó, Budapest, 2001.
- 2. Yaglom, Akiva Moiseevich, An Intorduction to the Theory of Stationary Random Functions, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.
- 3. Yaglom, Akiva Moiseevich, Correlation theory of stationary and related random functions. Vol. I., II. Springer Series in Statistics. Springer-Verlag, New York, 1987.
- 4. Wentzel, E., Ovcharov, L. Applied Problems in Probability Theory, Mir Publishers, Moscow, 1983.