Obuda University				Institute of Applied	Mathamatica	
John von Neumann Faculty of Informatics			formatics	Institute of Applied	Mathematics	
Name and code:				Credits:		
Functional inequalities			2021	2021/22 year II. semester		
Subject lecturers:	Prof. d	r. habil.	Alexandru Kristály			
Prerequisites (with code):		Calculus I, II				
Way of						
assessment:						
Course description:						
Goal: to provide	an intr	oductio	n into functional in	equalities arising in C	Geometric Analysis,	
Sobolev spaces ar	nd PDE	s.				
Course description	n: isop	erimetri	ic inequalities; symr	metrisation; optimal m	ass transport; sharp	
Sobolev inequaliti	ies; infl	uence o	of curvature.			

Lecture schedule				
Education week	Topic			
1.	L^1-Sobolev inequalities			
2.	Optimal mass transportation: basic elements			
3.	Monge-Kantorovich problem			
4.	Symmetrisation			
5.	Inequality of Polya-Szego			
6.	Inequality of Hardy-Littlewood-Polya			
7.	Sharp Sobolev inequality I: Talenti approach			
8.	Hardy inequality			
9.	Heisenberg-Pauli-Weyl uncertainty principle			
10.	Brezis-Poincare-Vazquez inequality			
11.	Sharp Sobolev inequality II: Cordero-Erausquin-Nazaret-Villani approach			
12.	Influence of curvature I: negative curvature			
13.	Influence of curvature II: positive curvature			
14.	Application to elliptic problems (Dirichlet, Schrodinger)			
Midterm requirements				

Midterm requirements

Education week	Topic

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

[SK1] megjegyzést írt:

Type of exam

Project presentation & Written exam

Type of replacement

Project presentation

References

Mandatory:

- Ghoussoub N., Moradifam A., Functional Inequalities: New Perspectives and New Applications, AMS, 2013.
- 2. Kristály A., Sharp uncertainty principles on Riemannian manifolds: the influence of curvature. J. Math. Pures Appl. (9) 119 (2018), 326–346.

Recommended:

- Kristály A., Radulescu V., Varga Cs., Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Enciclopedia of Mathematics and its Applications. No 136, 2010.
- 2. Balogh Z., Kristály A., Sipos K., Geometric inequalities on Heisenberg groups. Calc. Var. Partial Differential Equations 57 (2018), no. 2, Art. 61, 41 pp.