Obuda University			Institute of Cyber-physical systems					
John von Neumann Faculty of Informatics								
Name and code: High availability embedded systems / NIXMITEMNE Credits: 4								
	2022/23 year I. semester							
Subject lecturers:	Zsolt E	Bringye						
Prerequisites (wit code):	h	Test						
Weekly hours:	Lectur	e: 1	Seminar.: 0		Lab. hours: 2	Consultation: 0		
Way of								
assessment:								
Course description:								
<i>Goal:</i> The aim of the lecture is to familiarize students with the basics of High Availability								
Embedded Systems.								
<i>Course description:</i> During the course, the student will get knowledge about the theoretical and								
practical problems of highly reliable embedded systems and the possible solutions to these								
problems. Hardware and software redundancy is highlighted field in this course. In the lab								
sessions, the students will develop Arduino-based PoC codes (using Tinkercad) to deepen their								
knowledge of the subject. In the second part of the semester, the students will develop a								
relatively complex embedded system with HA requirements and use the learned methods to								
satisfy these requirements.								

Lecture schedule						
Education week	Topic					
1.	Lecture (3 hours): General introduction to the topic (high availability in					
	general, specialties of embedded systems)					
2.	Lab (3 hours): Introduction to Tinkercad Circuits and most important					
	components (creating simple test programs)					
3.	Lab (3 hours): Tinkercad Circuit Blocks vs Text-based programming,					
	debug possibilities (creating simple test programs)					
4.	Lecture (3 hours): Error Detection					
5.	Lab (3 hours): Error detection examples					
6.	Lab (3 hours): A complex example with HA requirements					
7.	Lecture (3 hours): Error Handling					
8.	Lab (3 hours): A complex example with HA requirements (contd.)					
9.	Lab (3 hours): A complex example with HA requirements (contd.)					
10.	Lecture (3 hours): Protecting from Errors					
11.	Lab (3 hours): A complex example with HA requirements (contd.)					
12.	Test					
Midterm requirements						

Written test (theoretical) and a simple PoC program which solves a given HA related problem

Final grade calculation methods							
Achieved result	Grade						
86%-100%	excellent (5)						
74%-85<%	good (4)						
62%-73<%	average (3)						
50%-61<%	satisfactory (2)						
0%-49<%	failed (1)						
Ту	pe of exam						
n.a.	e						
	or replacement						
References							
Mandatory:							
Lecture notes (download form https://elearn	<u>ning.uni-obuda.hu/</u>)						
Recommended: Embedded Software Devel by Chris Hobbs (Author)	opment for Safety-Critica	al Systems, Second Edition					