Obuda University John von Neumann Faculty of Informatics				Institute of Applied Mathematics			
Name and code:				Credits:			
Critical points and applications				2022/23 year I. semester			
Subject lecturers: Prof. dr. habil. Alexandru Kristály							
Prerequisites (with code):		Calculus I, II					
Weekly hours: Lectur		e:	Seminar.:		Lab. hours:		Consultation:
Way of							
assessment:	sessment:						
Course description:							
<i>Goal</i> : To provide an insight into the theory of critical points and its applications.							
Course description: Several mathematical problems can be reduced to the study of critical points							
of a certain energy functional. During the course we provide a quite complete picture about this							
theory, showing both theoretical aspects and applications in partial differential equations (PDEs)							
and differential geometry.							

Lecture schedule					
Education week	n week Topic				
1.	Motivation to study critical points				
2.	Deformation lemmas				
3.	3. Morse theoretical approach to critical points				
4.	4. Mountain pass theorem and Palais-Smale condition				
5.	5. Application: elliptic PDEs on bounded domains				
б.	6. Principle of symmetric criticality and Strauss lemma				
7.	Rubic actions and elliptic PDEs on unbounded domains				
8.	8. Nonsmooth critical points and differential inclusions				
9.	9. Variational inequalities				
10.	10. Application: subcritical PDEs				
11.	11. Application: sublinear PDEs				
12.	12. Application: elliptic PDEs with oscillations				
13.	13. Critical points on non-flat structures				
14.	Open problems and perspectives in critical points				

Midterm requirements

Education week	Topic

Final grade calculation methods

Achieved result	Grade		
89%-100%	excellent (5)		
76%-88<%	good (4)		
63%-75<%	average (3)		
51%-62<%	satisfactory (2)		
0%-50<%	failed (1)		

Type of exam						
Project presentation & Written exam						
Type of replacement						
Project presentation						
References						
Mandatory:						
1. Costea N, Kristály A, Varga C, Variational and Monotonicity Methods in Nonsmooth						
Analysis, Frontiers in Mathematics, Birkhäuser/Springer, 2021.						
2. Kristály A., Radulescu V., Varga Cs., Variational Principles in Mathematical Physics,						
Geometry, and Economics, Cambridge University Press, Enciclopedia of Mathematics						
and its Applications. No 136, 2010.						
3. Willem M., Minimax theorems. Progress in Nonlinear Differential Equations and their						

3. Willem M., *Minimax theorems*. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.

Recommended:

- 1. Gasiński L., Papageorgiou N., *Nonsmooth critical point theory and nonlinear boundary value problems*. Series in Mathematical Analysis and Applications, 8. Chapman & Hall/CRC, Boca Raton, *FL*, 2005.
- 2. Kristály A., Moroşanu Gh., New competition phenomena in Dirichlet problems. J. *Math. Pures Appl.* (9) 94 (2010), no. 6, 555–570.
- 3. Kristály A., Infinitely many solutions for a differential inclusion problem in R*N*. *J*. *Differential Equations* 220 (2006), no. 2, 511–530.