[
Obuda University John von Neumann Faculty of				Applied Mathematics Institute			
Informatics							
Name and code: Intelligent Development tools NMXIF1SMNE							
Credits:							
			2022/23 year I. semester				
Subject lecturers: Dr Kósi Krisztián							
Prereguisites (with							
code):							
Weekly	Lecture:		Seminar.:		Lab. hours: 2	Consultation:	
hours:							
Way of							
assessment:							
Course description:							
Goal:							
Introduce modern scientific computational tools							
Course description:							
Learn modern, open source computational tools for scientific computing, to							
solve hard mathematical problems, related to nonlinear control theory.							

Lecture schedule							
Education		Topic					
week			Τορίε				
1		Introduction, LaTeX based word processing and Julia					
1.		programming language					
2.		Mathemati	cal background				
3.		Numerical	omputation				
4.	4. Modeling		and simulations				
5.		Lyapunov s	stability				
6.	6. Sliding M		de				
7.		SISO example for Sliding Mode Control					
8. MIM		MIMO exan	MIMO example for Sliding Mode Control				
9. Theo		Theory for	heory for Fixed Point based adaptive control				
10. SIS		SISO example: planning					
11. SISO e		SISO exam	xample: implementation				
12. MIMO exar		MIMO exan	nple: planning				
13. MIMO exar		MIMO exan	nple: implementation				
14.	14. Home Pro		ect presentation				
Midterm requirements							
	Education		Торіс				
	week						
	14		Submit and present a Home				
			Project.				

Final grade calculation methods

Home project with presentation, and documentation and programs, or the results of the homework problems. The better result will be the final grade. Who absent more than 30% will be denied from the course.

Achieved result	Grade
86%-100%	excellent (5)
74%-85%	good (4)
62%-73%	average (3)
50%-61%	satisfactory (2)
0%-49%	failed (1)

Type of exam

Type of replacement

Sign. Retake Exam from the mathematical problems, which covered in the semester.

References

Mandatory:

System and Control Theory - József K. Tar - László Nádai - Imre J. Rudas. TYPOTEX 2012, ISBN 978-963-279-676-5

Applied Nonlinear Control, Slotine and Li, Prentice-Hall 1991

Recommended: