University of Óbuda John von Neumann Faculty of Informatics				Institute of Applied Mathematics			
Name and code:					Credits:		
Analysis NMXAN1PMNE				2022/23 1st semester			
Subject lecturers: Dr. Zoltán Léka							
Prerequisites (with							
code):		-					
Weekly hours:	Lectur	e: 2	Seminar.: 1		Lab. hours: 0	Consultation: 0	
Way of assessment:	Final grade based on two midterm exams						
Course description:							
<i>Goal</i> : Our goal is to introduce the fundamental concepts of functional analysis and Lebesgue integration. These concepts are crucial in modern study of probability theory, partial differential equations, and quantum theory.							

Course description: The problem of the measure. Lebesgue integral, convergence theorems. Lebesgue and Riemann integrals. Study of Hilbert spaces with orthogonal systems, duality.

Lecture schedule					
Education week	eek Topic				
1.	roduction to measure theory				
2.	erior measure and Lebesgue measure of R ^A d				
3.	asurable functions and their properties				
4.	Lebesgue integral				
5.	Convergence theorems: Fatou lemma, Monotone convergence				
5.	theorem and Lebesgue's dominated theorem				
6.	1 st midterm exam				
7.	General measures and Lebesgue Lp-spaces				
8.	Differentiation: absolute continuous functions				
9.	Functions of bounded variations				
10.	Introduction to Hilbert spaces, normed spaces				
11.	Geometry of Hilbert spaces, inner product spaces				
12.	Duality, orthogonal basis of L2 spaces, integral operators, kernels				
13.	2 nd midterm exam				
14.	Resit exam				
Midterm requirements					
Education	week Topic				
6, 13	Midterms				

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam

To get the signature, one needs to accomplish at least 50% of the weekly home assignments. There will be two written midterms.

Type of replacement

At the last week of the semester one can have a resit exam.

References

Mandatory:

E. Stein: Real Analysis

Recommended:

Rynne and Youngson: Linear Functional Analysis