University of Óbuda
John von Neumann Faculty of Informatics
Name and code:

Institute of Applied Mathematics

Credits:3

Differential equations NMXDE1PMNE

2022/23 year I. semester

Subject lecturers	s: Dr. Zol	tán Lék	ka			
Prerequisites (wi code):	ith	-				
Weekly hours:	Lectur	e: 2	Seminar.:	1	Lab. hours: 0	Consultation: 0
Way of assessment:	Two n	nidterm	exams + wri	tten ex	kam	
			Course	descr	iption:	
	1	•	C (1 C	1	. 1	1 / 1' ' 1

Goal: To provide an overview of the fundamental concepts of one and two-dimensional dynamical systems. Moreover, the course discusses the methods of calculus of variations with applications in mechanics, and elements of PDEs (heat and wave equations in Euclidean spaces)

Course description: Dynamics of first and second order differential equations, stability of fixed points through linearization. Energy methods and Lyapunov direct methods. Periodic solutions, limit cycles. Calculus of variations. Hamiltonian and Lagrangian systems, Legendre transform. Elements of PDEs: method of characteristics, heat equation, wave equation.

Lecture schedule						
Education week	Topic					
1.	First-order ordinary differential equations: linear, exact and separable systems					
2.	Dynamics of first order autonomous differential equations, fixed points.					
3.	Dynamics of second order systems: Jacobian matrix, characterization of fixed points through linearization, stability					
4.	Energy methods, Lyapunov s theorems on stability					
5. Periodic solutions, limit cycles: divergence criterion, Poincaré-Bene theorem						
6.	1st written exam					
7.	⁷ . Introduction to variational calculus: brachistochrone problem, Euler- Lagrange equations					
8.	Calculus of variations in mechanics, Hamiltonian systems					
9.	Hamiltonian and Lagrangian systems, Legendre transformation					
10.	Partial differential equations: method of characteristics					
11.	Second order partial differential equations, classification					
12.	Laplace operator, Dirichlet energy and the heat equation					
13.	2nd written exam					
14.	Goursat- and Cauchy problems, the wave equation.					
Midterm requirements						
1	Education week Topic					
	Weekly home assignments, and two midterms					

	Final grade	calculation methods	
	Achieved result	Grade	
	89%-100%	excellent (5)	
	76%-88<%	good (4)	
	63%-75<%	satisfactory (3)	
	51%-62<%	passed (2)	
	0%-50<%	failed (1)	
	Ty	pe of exam	
Written exam o	f 180 mins		
	Туре о	f replacement	
One midterm of	f the semester can be replace	d at the final week	
	R	eferences	

R. Kent Nagle, Edward B. Saff, Arthur David Snider: Foundamentals of Differential Equations and Boundary Value Problems, 8th Edition, Addison-Wesley, 2011.

D. Strogatz: Non-linear dynamics and chaos, Westview Press, 2001.

Recommended:

E. Lieb, M. Loss: Analysis, Amer. Math. Soc., Providence, 2001. Simon J. Malham: An introduction to Lagrangian and Hamiltonian mechanics, 2016.