Obuda University				Institute of Applied Mathematics		
John von Neumann Faculty of Informatics					J. J	
Name and code:Probability theory and the basics ofCredits: 3						redits: 3
mathematical s	mathematical statistics NMXVS1PMNE				2022/23	year I. semester
Subject lecturers:	István 1	Mező				
Prerequisites (wit	h					
code):						
Weekly hours:	Lectur	e: 2	Seminar.:1		Lab. hours: 0	Consultation:0
Way of						
assessment:	exam					
Course description:						
<i>Goal</i> : To lay the foundations of probability theory and statistics						
Course description	<i>n:</i> Kolr	nogoro	v probability sp	pace;	aw of total probabil	ity; conditional
probability; Baye	probability; Bayes' theorem; probability distribution function; expectation, variance and					on, variance and
moments; special distributions (Poisson, uniform, etc.). Moment generating function,						
characteristic function. Joint distributions; random vectors; independence: covariance matrix.						
General definition and properties of conditional expectation: law of total expectation. Types of						
convergence: Borel-Cantelli lemmas: laws of large numbers: sums of random variables: central						
limit theorems. Statistical space: sample: statistics: ordered sample: empirical distribution						
function: Glivenko-Cantelli theorem Estimation techniques maximum-likelihood estimation						
method of moments, method of least squares. Hypothesis testing: confidence intervals						
memory of moments, memory of least squares. Hypothesis testing, confidence intervals.						

Lecture schedule					
Education week	Topic				
1.	Kolmogorov probability space and related notions. Examples.				
2.	Law of total probability; conditional probability, Bayes' theorem. Random variables and their properties. Probability distribution function; expectation, variance and moments				
3.	Special discrete and continuous random variables and their properties (Poisson, uniform distributions, etc.)				
4.	Continuation of lecture 3 plus moment generating functions, characteristic function				
5.	Joint distributions; random vectors; independence; covariance matrix.				
6.	General definition and properties of conditional expectation; law of total expectation.				
7.	Types of convergence; Borel-Cantelli lemmas; laws of large numbers; sums of random variables; central limit theorems.				
8.	Continuation of lecture 7.				
9.	Statistical space; sample; statistics; ordered sample; empirical distribution function; Glivenko-Cantelli theorem.				
10.	Continuation of lecture 9.				
11.	Estimation techniques, maximum-likelihood estimation, method of moments, method of least squares.				
12.	Hypothesis testing; confidence intervals				
13.	Parametric and nonparametric tests				
14.	Summary				

Parametric and nonparametric tests.

Midterm requirements: written exam

Education week	Topic
7.	First 6 weeks
14.	8-13 weeks

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam: written exam

Type of replacement: cf. TVSZ

References

Mandatory: https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf

Recommended:

Gut, A.: An Intermediate Course of Probability, 2nd ed.; Springer; 2009.

Gut, A.: Probability: A Graduate Course; Springer; 2005.