Óbuda University				Institute for Cyber Physical Systems				
John von Neumann Faculty of Informatics			Institute for Cyber-Physical Systems					
Name and code: Advanced Computer Architectures I (NIXKA1EBNE) Credits: 2								
Computer Science and Engineering BSc programme 2022/23 year II. semester								
Subject lecturers: Zsolt Bringye								
Prerequisites (with code):		Introduction to Computer Architectures (NIESA1EBNE)						
Weekly hours: 2	Lectur	e: 2	Seminar.: 0		Lab. hours: 0	Consultation: 0		
Way of	written exam							
assessment:	written exam							
Course description:								
Goal: During the semester the students get to know the design and implementation possibilities								
of the CPU and GPU level parallel program execution								
Course description:								
Topics covered in lecture								
Designing a single cycle and a multicycle processor								
Functional parallelism								
Data parallelism								
Classification of parallel architectures								
Basic parallel techniques								
Vector architectures								
SIMD ISA extensions								
• GPUs								
• Multiprocessor systems (incl. cache coherency and heterogenous systems)								
Motherboards, parts of motherboards								

Homework (optional) To give a deeper understanding of the material the students allowed to form groups of two and create a homework project during the semester which they will present at the end of the semester.

Lecture schedule					
Education week	Торіс				
1.					
2.	A short review (topics from the previous semester)				
3.	Designing a single cycle processor				
4.	Designing a multicycle processor				
5.	Types of parallelism, classification of parallel architectures				
6.	Basic parallel techniques				
7.	Basic parallel techniques (contd.)				
8.	Vector architectures				
9.	SIMD ISA extensions				
10.	GPUs, comparison of CPU and GPU based code execution				
11.	Multiprocessor systems				
12.	Multiprocessor systems (contd.)				
13.	Motherboards				
14.	Presentation of homework				
Midterm requirements					

n.a.

Final grade calculation methods

Type of exam

Written exam (up to 100 points). The requirement of the pass mark is 51 points. Type of replacement

ype of replacement

References

Mandatory: in the e-learning system (Moodle).

Recommended:

- Advanced Computer Architectures by D. Sima, T. Fountain and P. Kacsuk
- Computer Architecture by J.L. Henessy and D. A. Patterson
- Digital Desing and Computer Architecture by S. L. Harris and D. M. Haris