Obuda University			Institute of Applied Mathematics					
John von Neumann Faculty of Informatics			institute of Applied Mathematics					
Name and code:	NIMFM1SAN	NK Fundament	al M	athematical Methods	; (Credits: 4		
				2022/23 year	II. seme	ester		
Subject lecturers:	Subject lecturers: Dr Kósi Krisztián							
Prerequisites (wit	h							
code):								
Weekly hours:	Lecture: 1	Seminar.:		Lab. hours: 1	Consul	tation:		
Way of								
assessment:	Exam							
Course description:								
<i>Goal</i> : The main aim is to provide the Students with the most important mathematical								
methods on which the modern nonlinear control applications are based. Besides the								
purely mathematical point of view actual implementation issues are considered, too.								
<i>Course description:</i> The beginning of the course, concentrates on mathematical methods. It								
shows the connections between classical math subjects (like calculus, linear algebra), and the								
modern nonlinear control theory. Then shows detailed examples, from theory to								
implementation, using two modern methods (VSSM, RFPT). The last part shows some another								
interesting example, how mathematics is related to computer science, like fractals, genetic								
algorithms, multidimensional scaling.								

Lecture schedule							
Education wee	Торіс						
1.	Introduction to LaTeX and Julia language						
2.	Mathematical background						
3.	Mathematical background						
4.	Numerical Methods						
5.	Laplace Transform, First Order Differential Equations						
6.	Second Order Differential Equations						
7.	Series of Functions						
8.	Metric Space,						
9.	Fixed Point Iteration, Modelling and Simulation						
10	Introduction to non-linear robotics, Lyapunov's stability definitions and						
10.	theorems						
11.	Robust Control, VSSM						
12.	Adaptive Control, RFPT						
13.	Extra content						
14.	Presentations						
Midterm requirements							
	Education week Topic						

Final grade calculation methods							
	Achieved result						
	88%-100%	excellent (5)					
	75%-88<%	good (4)					
	62%-75<%	average (3)					
	50%-62<%	satisfactory (2)					
	0%-50<%	failed (1)					
Signature requirements: If someone absent at lecture and lab, and more than four times will							
have denied from the course.							
Every homework is 1 point get 50% or more from the homework for the signiture.							
(just the overall points matters)							
Regular exam.							
Can be get <u>Offered grade</u> :							
Homework results overal is or above 62%.							
• Create a home project: solve a non-trivial problem, code it in Julia, create minimum 5							
page paper in IEEE format , and held a 10 min long presentation in the last class.							