Obuda University			Applied Mathematics Institute				
John von Neumann Faculty of Informatics							
Name and code: Intelligent Development tool					NMXIF1SMNE Credits:		
			_				
2022/23 year II. s						. semester	
						_	
Subject lecturers: Dr Kósi Krisztián							
Prerequisites (with							
code):							
Weekly hours:	Lectur	e:	Seminar.:		Lab. hours: 2	C	Consultation:
Way of							
assessment:							
Course description:							
Goal:							
Introduce modern	scienti	fic com	putational tools	ls			
Course descriptio	n:						
Learn modern, open source computational tools for scientific computing, to solve hard							
mathematical problems, related to nonlinear control theory.							

Lecture schedule						
Education we	ek	Торіс				
1.	Introduction, I language	Introduction, LaTeX based word processing and Julia programming				
2.		Mathematical background				
3.	Numerical con	Numerical computation				
4.	Modeling and	Modeling and simulations				
5.	Lyapunov stab	Lyapunov stability				
6.	Sliding Mode					
7.	SISO example	SISO example for Sliding Mode Control				
8.	MIMO examp	le for Sliding Mode Control				
9.	Theory for Fix	ed Point based adaptive control				
10.	SISO example	SISO example: planning				
11.	SISO example	SISO example: implementation				
12.	MIMO examp	le: planning				
13.	MIMO examp	le: implementation				
14.	Home Project	presentation				
Midterm requirements						
	Education week	Торіс				
	14	Submit and present a Home Project.				

Final grade calculation methods

Home project with presentation, and documentation and programs, or the results of the homework problems. The better result will be the final grade. Who absent more than 30% will be denied from the course.

Achieved result	Grade		
86%-100%	excellent (5)		
74%-85%	good (4)		
62%-73%	average (3)		
50%-61%	satisfactory (2)		
0%-49%	failed (1)		

Type of exam

Type of replacement

Sign. Retake Exam from the mathematical problems, which covered in the semester.

References

Mandatory:

System and Control Theory - József K. Tar - László Nádai - Imre J. Rudas. TYPOTEX 2012, ISBN 978-963-279-676-5

Applied Nonlinear Control, Slotine and Li, Prentice-Hall 1991

Recommended: