Obuda University			Institute of Biomatics and Applied Artificial	
John von Neumann Faculty of Informatics			Intelligence	
Name and code	: Control theo	ry in Robotics, N	BIRI2SMNE	Credits: 3
2022/23 year II.	semester			
Subject lecturers	s: Dr. Drexler	Dániel András		
Prerequisites (w	ith			
code):				
Weekly hours:	Lecture: 1	Seminar.: 0	Lab. hours: 1	Consultation: 0
Way of	midtama tas	4		
assessment:	midterm test.			
		Course de	escription:	
Goal: Students	become famili	ar with the basic	es of nonlinear control a	and dynamic control of

Goal: Students become familiar with the basics of nonlinear control and dynamic control of robots described as series of kinematic chains.

Course description: Linear and nonlinear systems, equilibrium points, linearization techniques, path tracking control, reference path generation, stability analysis (Lyapunov methods), states space control, control of robot arms with velocity and torque input.

Lecture schedule				
Education week	Topic			
1.	Introduction, linear and nonlinear systems.			
2.	Equilibrium points of nonlinear systems, linearization in an operation			
	point.			
3.	Exact linearization of nonlinear systems.			
4.	Path tracking control, reference path generation.			
5.	Examples.			
6.	Stability of equilibrium points, stability definitions, examples.			
7.	Stability of equilibrium points, Lyapunov's 1 st method, examples.			
8.	Stability of equilibrium points, Lyapunov's 2 nd method, examples.			
9.	Examples.			
10.	State space control of linear systems.			
11.	State space control, state estimation.			
12.	Control of robotic arms with velocity input and torque input.			
13.	Midterm test.			
14.	Midterm test replacement.			
Midterm requirements				
One midterm test.				

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam

_

Type of replacement

According to the neptun system.

References

Obligatory: lecture notes from elearning.uni-obuda.hu

Recommended:

Richard M. Murray, Zexiang Li, S. Shankar Sastry, *A Mathematical Introduction to Robotic Manipulation*, CRC Press, Inc. Boca Raton, FL, USA 1994

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, *Robotics: Modelling, Planning and Control*, Springer Publishing Company, Incorporated 2008

Kevin M. Lynch and Frank C. Park, *Modern robotics: Mechanics, Planning, and Control*, Cambridge University Press, 2017