Obuda University			Institute of Biomatics and Applied Artificial			
John von Neumann Faculty of Informatics			Intelligence			
Name and code: SW Validation in the Automotive Industry Credits: 3						
NBWSW1HBNE						
Computer Science Engineering BSc			2022/23 year II. semester			
Responsible person of subject: Dr Ákos Csilling (Robert Bosch Kft)						
Subject lecturers: Imre Mészáros, Ádám Jezsoviczki						
Prerequisites (with	Comprehens	Comprehensive examination (NIXSS1EBNE)				
code):	Comprehensi					
Weekly hours:	Lecture: 2	Seminar.: 0	Lab. hours: 0	Consultation: 0		
Way of assessment						
(exam or midterm	Midterm grade based on homework and written test.					
grade):						
Course description:						

Goal:

The rapid advancement in the automotive industry includes the increasing reliance on SW functions. Traditional functions are implemented in SW, and new functions are constantly added with increasing SW complexity. Autonomous driving will definitely need AI-based solutions, while the importance of safety and security are also growing.

The goal of the course is to introduce the audience to the SW and system validation and verification methodology used in the automotive industry, with insights from the daily work of engineers. The learnings from the course can be directly used in any other safety-critical, embedded, or large-scale development environment, where SW quality is important.

Course description:

In addition to an introduction to the systematic validation and verification processes used in the automotive industry, we will also discuss the new challenges and methods to tackle them. The course will include plenty of real-life examples from the daily life of V&V engineers. Practical experience will be gained by the students through the homework assignments.

Lecture schedule				
Education week	Торіс			
1.	Introduction. Specific challenges of the automotive industry, the growing role of SW. Lifecycle of products, importance of testing. Typical automotive products.			
2.	Personal aspects of testing, testing career paths. Project structure, actors. RASIC diagram.			
3.	Automotive requirement systems, standards. Automotive development processes, ASPICE, v-model, model phases. The role of agility in automotive. Release process.			
4.	Concepts, tasks, role of validation and verification (V&V). Test planning, tracking, documentation. Defect handling. Shift left.			
5.	Static test methods in automotive, requirement verification, coding rules, and their verification. The value-add of review.			
6.	Dynamic test methods. Requirement-based testing, delta testing. Selection of test methods. Levels of testing.			
7.	Testing non-functional requirements: performance, stability, usability. Environmental tests.			

	Test automation, virtual test environments, MiL, SiL, HiL, ViL, open-					
8.	loop, closed-loop. Continuous integration and testing. Developing test					
0	environments.					
9.	Functional Safety, ISO 26262, and its impact on testing.					
10.	Cybersecurity requirements and their testing.					
11.	est metrics, coverage measurement, definition of done. Interpretation and					
	Euture of automotive testing, new trends, challenges. Testing of artificial					
12.	intelligence-based systems.					
13.	Test					
14.	Test (spare)					
Midterm requirements						
Student participation in the lectures is required.						
All homework and the classroom test are required to complete during the midterm.						
Assessments schedule						
Education week	Topic					
2	Homework: Choice of a SW development project, high-level description.					
4	Homework: Definition of a test strategy for the project.					
6	Homework: Review of the project requirements.					
8	Homework: Test plan for the project, list of test cases.					
10	Homework: Implementation of sample test cases.					
12	Homework: Test report for the project.					
13, 14	Multiple-choice test and spare date for retake.					
	Final grade c	alculation methods				
	Achieved result	Grade				
	89%-100%	excellent (5)				
	76%-88<%	good (4)				
	63%-75<%	average (3)				
	51%-62<%	satisfactory (2)				
	0%-50<%	failed (1)				
Final grade = 0.5*theoretical test + 0.5*homework assignments A minimum of 50% must be achieved in each part.						
		0				

Type of exam Type of replacement References

Obligatory:

https://istqb-main-web-prod.s3.amazonaws.com/media/documents/ISTQB-

CTFL_Syllabus_2018_v3.1.1.pdf

Recommended: -