Obuda University		Instit	Institute of Biomatics and Applied Artificial		
John von Neumann Faculty of Informatics		S	Intelligence		
Service robots, medical robots			Credits: 3		
Computer Science Engineering MSc ROB spec			2022/23 ye	ear II. semester	
Responsible person of subject: Tamás Haidegger, PhD					
Subject lecturers: Tamás Haidegger, PhD, Renáta Nagyné Elek					
Prerequisites (with code):	-				
Weekly hours:	Lecture: 2	Seminar.: 0	Lab. hours: 0	Consultation: 0	
Way of assessment (exam or midterm grade):	Exam grade				
Course description:					

modern medicine and service robots. Course description: The course presents the most important technological trends in computerintegrated surgery, e.g.: robot-assisted surgery, surgical skills assessment, image-guided

Goal: The aim of the subject is to learn about the main directions of computer-integrated surgery,

surgery, neural network-based medical image processing, medical imaging. The course introduces service robots, their use and standardization.

Lecture schedule			
Education week	Topic		
1.	Introduction of service robots and computer-integrated surgery		
2.	Laboratory demonstration at the Antal Bejczy Center for Intelligent		
	Robotics		
3.	Basics of robotics		
4.	Da Vinci Surgical System		
5.	Medical imaging		
6.	Surgical autonomy		
7.	Image-guided surgery		
8.	Project practice lab		
9.	Surgical skills assessment		
10.	AR/VR		
11.	Neural networks		
12.	Da Vinci competitors		
13.	Business considerations in modern medicine		
14.	Midterm, project presentation		
Midterm requirements			

Midterm requirements

Midterm and project work (satisfactory results for both)

Assessments schedule				
Education week	Topic			
14	Midterm 1-13. week lectures			
14	Project presentation			

Final grade calculation methods

Achieved result	Grade
85%-100%	excellent (5)
70%-84<%	good (4)
60%-69<%	average (3)
50%-59<%	satisfactory (2)
0%-49<%	failed (1)

Final grade = 0.5*Midterm + 0.5*project work A minimum of 50% must be achieved in each part.

Type of exam

written

Type of replacement

Retake midterm or project work

References

Obligatory: Lectures

Recommended: D'Ettorre, Claudia, et al. "Accelerating Surgical Robotics Research: Reviewing 10 Years of Research with the dVRK." arXiv preprint arXiv:2104.09869 (2021).