Óbuda Universit	ty				In stitute for College	
John von Neuman	n Facult	y of Ir	nformatics		Institute for Cyber	-Physical Systems
Name and code:	Virtualis	sed sto	orage systems (l	NIXV	T1CBNE)	Credits: 4
Computer Science	e and Eng	gineer	ing BSc		202	22/23 year II. semester
Subject lecturers	s: Attila l	Farkas				
Prerequisites (w	ith					
code):		-				
Weekly hours:	Lecture	: 1	Seminar.: 0		Lab. hours: 1	Consultation: 0
Way of	mid tom		1.			· · ·
assessment:	iniu-teri	III IIIai	K			
			Course de	escrip	tion:	
Goal: The main p	ourpose o	of the o	course is to sho	w the	main features of c	lata storage systems, by
introducing data s	torage bu	uilding	gblocks, and str	ucture	es built upon them.	By the end of the course
students are expe	cted to kr	now th	e major data ste	orage	physical devices (a	lisks, tapes, SSDs, etc.),
data storage netw	orks (SA	N, NA	S, FC, etc.), an	id gen	eric storage solution	ons needed to use virtual
facilities (like vol	umes, re	dunda	ncy structures,	multi	pathing) based on t	the physical devices.
Course description	on: We st	tart wi	th introducing t	the fu	ndamental terms of	f storage infrastructures,
then introducing	the phys	ical da	ata storage dev	ices,	followed by the w	idely used data storage
networks. We fo	llow the	logica	al layered mod	lel of	data storage arch	itectures, at each layer
showing the mos	st freque	ently u	used virtualizat	ion s	olutions as well a	as parameters. The lab
practices will cor	respond	to the	theoretical over	erview	, where students a	are allowed to try out in
practice what the	y learn in	theor	у.			

	Lecture schedule
Education week	Торіс
1.	Storage fundamentals
2.	Physical data storage devices
3.	Holiday
4.	Data storage structures: JBOD, partitions, RAID
5.	Data storage architectures 1, DAS, NAS
6.	Data storage architectures 2, SAN
7.	Holiday
8.	Data storage protocols 1, FC, AoE, FCoE
9.	Data storage protocols 2, FC, SCSI, iSCSI
10.	Holiday
11.	Midterm test
12.	Midterm presentation
13.	Replacement of midterm test or the presentation
14.	Holiday

Midterm requirements

The midterm test must be passed, and the midterm presentation must be documented and presented.

Midterm tests
Topic
Midterm test
Midterm presentation
Replacement of midterm test or presentation

Final grade calculation methods

Theoretical Moodle test and practical midterm test.

The completed midterm presentation will modify the final result with -1/0/+1 grade.

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of replacement

In the 13th week for the written midterm test / presentation.

Type of exam

Exam grade calculation method

-

References

Mandatory:

https://prezi.com/6mntpvs8oqts/

Recommended:

Built into the mandatory one