

| Institute of Biomatic                  |                                                                                      |             |          |                 |     |     |     |  |
|----------------------------------------|--------------------------------------------------------------------------------------|-------------|----------|-----------------|-----|-----|-----|--|
| Name of the subject:                   |                                                                                      | Code of the | Credits: | Weekly hours:   |     |     |     |  |
|                                        |                                                                                      | subject:    |          |                 | lec | sem | lab |  |
| <b>Fundamental Mathematical</b>        |                                                                                      | NIMFM1SANK  | 4        | full-time       |     |     |     |  |
| Methods                                |                                                                                      |             |          |                 |     |     |     |  |
| Responsible person for the subje       |                                                                                      | ct:         |          | Classification: |     |     |     |  |
| Subject lecturer(s): Dr Kósi Krisztián |                                                                                      |             |          |                 |     |     |     |  |
| Prerequisites:                         |                                                                                      |             |          |                 |     |     |     |  |
| Way of the assessment:                 |                                                                                      | Exam        |          |                 |     |     |     |  |
| Course description                     |                                                                                      |             |          |                 |     |     |     |  |
| Goal:                                  | The main aim is to provide the Students with the most important mathematical         |             |          |                 |     |     |     |  |
|                                        | methods on which the modern nonlinear control applications are based. Besides the    |             |          |                 |     |     |     |  |
|                                        | purely mathematical point of view actual implementation issues are considered, too.  |             |          |                 |     |     |     |  |
| Course description:                    | The beginning of the course, concentrates on mathematical methods. It shows the      |             |          |                 |     |     |     |  |
|                                        | connections between classical math subjects (like calculus, linear algebra), and the |             |          |                 |     |     |     |  |
|                                        | modern nonlinear control theory. Then shows detailed examples, from theory to        |             |          |                 |     |     |     |  |
|                                        | implementation, using two modern methods (VSSM, RFPT). The last part shows           |             |          |                 |     |     |     |  |
|                                        | some another interesting example, how mathematics is related to computer science,    |             |          |                 |     |     |     |  |
|                                        | like fractals, genetic algorithms, multidimensional scaling.                         |             |          |                 |     |     |     |  |

| Lecture schedule      |                                                                                    |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------|--|--|--|--|
| Education week        | Торіс                                                                              |  |  |  |  |
| 1.                    | Introduction to LaTeX and Julia language                                           |  |  |  |  |
| 2.                    | Mathematical background                                                            |  |  |  |  |
| 3.                    | Mathematical background                                                            |  |  |  |  |
| 4.                    | Numerical Methods                                                                  |  |  |  |  |
| 5.                    | Laplace Transform, First Order Differential Equations                              |  |  |  |  |
| 6.                    | Second Order Differential Equations                                                |  |  |  |  |
| 7.                    | Series of Functions                                                                |  |  |  |  |
| 8.                    | Metric Space,                                                                      |  |  |  |  |
| 9.                    | Fixed Point Iteration, Modelling and Simulation                                    |  |  |  |  |
| 10.                   | Introduction to non-linear robotics, Lyapunov's stability definitions and theorems |  |  |  |  |
| 11.                   | Robust Control, VSSM                                                               |  |  |  |  |
| 12.                   | Adaptive Control, RFPT                                                             |  |  |  |  |
| 13.                   | MIMO Systems                                                                       |  |  |  |  |
| 14.                   | Presentations                                                                      |  |  |  |  |
| Mid-term requirements |                                                                                    |  |  |  |  |
| Conditions for obtain | ning a If someone absent at lecture and lab, and more than 30%, will have          |  |  |  |  |
| mid-term grade/signa  | ature denied from the course.                                                      |  |  |  |  |
|                       | Every homework is 1 point get 50% or more from the homework for the                |  |  |  |  |
|                       | signiture.                                                                         |  |  |  |  |
|                       | (just the overall points matters)                                                  |  |  |  |  |
|                       | Can be get <u>Offered grade</u> :                                                  |  |  |  |  |
|                       | Homework results overal is or above 62%.                                           |  |  |  |  |
|                       | • Create a home project: solve a non-trivial problem, code it in Julia,            |  |  |  |  |
|                       | create minimum 5 page paper in IEEE format, and held a 10 min                      |  |  |  |  |
|                       | long presentation in the last class.                                               |  |  |  |  |
| Assessment schedule   |                                                                                    |  |  |  |  |



**Education week** 

Topic

Method used to calculate the *mid-term grade* (to be filled out only for subjects with mid-term grades)

## Type of the replacement

Type of the replacement of written test/mid-term grade/signature

**Type of the exam** (to be filled out only for subjects with exams)

## written exam

Calculation of the exam mark (to be filled only for subjects with exams)

Achieved result Grade 88%-100% excellent (5) 75%-88<% good (4) 62%-75<% average (3) 50%-62<% satisfactory (2) 0%-50<% failed (1)

Final grade calculation methods:

| References        |                                                                                |  |  |  |
|-------------------|--------------------------------------------------------------------------------|--|--|--|
| Obligatory:       | Lecture Notes                                                                  |  |  |  |
| Recommended:      | System and Control Theory - József K. Tar - László Nádai - Imre J. Rudas.      |  |  |  |
|                   | TYPOTEX 2012, ISBN 978- 963-279-676-5                                          |  |  |  |
|                   | Applied Nonlinear Control, Slotine and Li, Prentice-Hall 1991                  |  |  |  |
|                   | M. Oberguggenberger, A. Ostermann.: Analysis for Computer Scientists. In:      |  |  |  |
|                   | Undergraduate Topics in                                                        |  |  |  |
|                   | Computer Science. Springer-Verlag Ltd. London, 2011                            |  |  |  |
|                   | Elements of the Theory of Functions and Functional Analysis - A.N. Kolmogorov, |  |  |  |
|                   | S.V. Fomin                                                                     |  |  |  |
| Other references: |                                                                                |  |  |  |