Institute of Cyber-p	hysical Sys	stems					
Name of the subject:		Code of the	Credits:	Weekly hours:			
		subject:			lec	sem	lab
Electronics		NKXEL1EBNF	5	full-time	2	0	2
Responsible person for	or the subje	ect: Dr. Mehdi Taassori		Classification:			
Subject lecturer(s):							
Prerequisites:		NKXEAIEBNF	Electronics Basic				
Way of the assessment:		mid-term grade					
Course description							
Goal:	The capability to use abstractions to analyze and design simple electronic circuits.						
Course description:	Learn how to develop and employ circuit models for elementary electronic						
	components, e.g. diodes and transistors. Develop the capability to analyze and design						
	simple circuits containing electronic components.						

Lecture schedule			
Education week Topic			
1.	Signals and Amplifiers, Frequency Spectrum of Signals, Analog and Digital Signals,		
1.	Amplifiers, Circuit Models for Amplifiers, Frequency Response of Amplifiers		
2.	Semiconductors, Bohr Model for an Atom, Bohr Model of the Silicon Atom		
	Energy Diagram, Semiconductor Atom & Conductor Atom, Silicon & Germanium,		
	Covalent Bonds in Silicon, Covalent Bonds, Conductivity of Semiconductor,		
	Electron Current, Hole Current, Silicon Crystal, N Type Semiconductor, P Type		
	Semiconductor, PN Junction, Depletion Region, Energy Diagram, PN Junction with		
	No Applied Voltage, PN Junction with an Applied Voltage, Current Voltage		
	Relationship of the Junction , I-V Characteristic		
3.	Diodes, The Ideal Diode, Terminal Characteristics of Junction Diodes, Modeling the		
	Diode Forward Characteristic		
4.	Operation in the Reverse Breakdown Region — Zener Diodes, Rectifier Circuits,		
	Limiting and Clamping Circuits		
5.	Bipolar Junction Transistors (BJT), Device Structure and Physical Operation,		
	Current–Voltage Characteristics		
6.	BJT Circuits at DC, Configurations of BJT Amplifiers, Transistor as a Switch, Logic Families		
7.	Operational Amplifiers, The Ideal Op Amp, The Inverting Configuration		
8.	The Noninverting Configuration, Difference Amplifiers, Integrators and		
	Differentiators		
9.	DC Imperfections, Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance		
10.	MOS Field-Effect Transistors (MOSFETs), Device Structure and Physical Operation,		
	Current–Voltage Characteristics		
11.	MOSFET Circuits at DC, Basic Configurations of MOSFET Amplifiers		
12.	MOSFET Transistor as a switch, Digital Logic Inverter		
13.	Theoretical Exam – Lab Exam		
14.	14. Retake Theoretical Exam – Retake Lab Exam		
Mid-term requirements			
Conditions for obtain			
mid-term grade/signa	nture		

Assessment schedule			
Education week	Topic		
12	In the lab hour : Lab Exam		
13	Theoretical Exam – Retake Lab Exam		
14	Retake Theoretical Exam – Retake Lab Exam		

Method used to calculate the *mid-term grade* (to be filled out only for subjects with mid-term grades)

•	Homework	5%
•	Quiz	0 - 10%
•	Lab	15%
•	Project	5%
•	Exam	65% - 75%

Type of the replacement

Type of the replacement of
written test/mid-term
grade/signature

Retake exam: once in the first 10 working days of the examination period.

Type of the exam (to be filled out only for subjects with exams)

Calculation of the exam mark (to be filled only for subjects with exams)

•	Homework	5%
•	Quiz	0 - 10%
•	Lab	15%
•	Project	5%
•	Evam	65% - 759

- The submission of homework and project by the designated deadline is mandatory for all students.
- Attendance for lab sessions, lab exam, quizzes, and the exam is mandatory.
- Conducting the quiz and delivering the project depends on the class schedule.
- A minimum of 51% must be achieved in each exam to pass.

Final grade calculation methods:

0-59 points - Fail

60-69 points - Pass

70-79 points – Satisfactory

80-89 points - Good

90-100 points - Excellent

References

Obligatory:	Sedra, Adel S., and Kenneth C. Smith. "Microelectronic circuits seventh edition." (2015)
Recommended:	
Other references:	