
Óbuda University
John von Neumann Faculty of Informatics Institute of Software Engineering

Name and code: Comprehensive exam (NIXSS1EBNE) Credits: 0

Computer Science BSc szak Daytime tagozat 2024/25 tanév I. félév
Subject lecturers: Dr. László Csink, Dr. Sándor Szénási, Dr. Zoltán Imre Vámossy, Dr. Henriette Komoróczki-Steiner,
László Somlyai
Prerequisites:
(kóddal)

Software design and Development I (NIXSF1EBNE), Software design and Development II
(NIXSF2EBNE), Web programming and advanced development techniques (NIXWH1EBNE),
Advanced development techniques (NSXHF1EBNE), Digital systems (NIXDR0EBNE), Elec-
tronics (NIEEL0EBNE)

Hours by week: Lecture: 0 Seminar: 0 Lab. hours: 0 Consultation: 0
Way of assessment: Examination

Course description
Goal: -
Course description: Topics of Engineering
1. Design and analysis of combination networks: universal logic functions, basics of systematic system design.
2. Description of combination networks: logic functions, truth tables, schematics and Karnaugh maps.
3. Ideal and realistic components, properties of real components: cause of non-ideal behavior, propagation delay, hazards in
combination networks
4. Definition of sequential networks, classification of sequential networks.
5. Development and analysis of sequential networks: Basic latches, use and behavior of flip-flops, development of network
from gates and latches.
6. Analysis of sequential networks, state-tables, state functions, state-diagrams, next-state maps. Race situation and
oscillation in sequential networks.
7. Basic schematics of important logic network families and their properties, such as RTL, DTL, TTL, CMOS. Basic register
schematics and basics of their operation.
8. Static and dynamic properties of digital circuits, properties of rising/falling edges and propagation delays, transfer
characteristic of basic gates, static and dynamic power consumption.
Topics of Software Design and Development
You are expected to have general knowledge of the topics, to present examples, to present pseudocodes of relevant algorithms,
to analyze algorithms’ efficiency, or occasionally provide C# code. There might be questions that involve several topics (e.g.
compare the insertion sort, quicksort and heapsort algorithms).
1. The basics of algorithms: The concept of the algorithm, flow structures, tools for describing the algorithm (block diagram,
box diagram, and pseudocode), efficiency, effectiveness, big O notation.
2. Simple Basic Programs: BP Sequence, BP Decision, BP Selection, BP Linear Search, BP Counting, BP Maximum Search.
3. Compound Basic Programs: BP Copy, BP Picking, BP Separation, BP Intersection, BP Union, BP Merge (union of
sorted arrays).
4. Combining Basic Programs: Combining BP Copy with BP Maximum Search, Combining BP Counting with BP Linear
Search, Combining BP Maximum Search with BP Picking, Combining BP Picking with BP Maximum Search, Combining
BP, Picking with BP Copy.
5. Sorting: Sorting with Simple Changes (SSC), Minimum Selection Sort (MSS), Bubble Sort (BS), Modified Bubble Sort,
Insertion Sort (IS), Modified Insertion Sort (MIS), Shell Sort (SHS).
6. Searching: Linear Search in a sorted sequence, Binary Search, Application of Binary Search: BP Decision, BP Selection,
BP Picking and BP Counting for sorted sequences.
7. Sets: Set as a data structure, creation of a set out of a sorted array; check whether an array is a set, membership, inclusion,
subset, union, intersection, subtraction, complement, symmetric difference.
8. Recursion 1: Idea of recursion, general model, recursive function call, advantages and disadvantages. Program transfor-
mations: R → I transformation, I → R transformation, examples.
9. Recursion 2: Recursive conversion of a number to another base Recursive and iterative factorial, Recursive and iterative.
Fibonacci algorithm, recursive binomial (bin, bin1, bin2), Hanoi towers, String reversal (reverse, reverse1), palindrome
(palindrome, palindrome1, and palindrome2), power and power1.
10. Advanced sorting 1: Recursive Merge Sort, Recursive Quicksort. Description, performance, randomized version.
11. Advanced sorting 2: Heap, min-heap and max-heap, heap algorithms, heapsort.
12. Advanced sorting 3: Distribution sort, counting sort, radix sort, bucket sort.
13. Dynamic Programming: Greedy algorithms. Divide-and-Conquer strategy, the idea of Dynamic Programming, the
knapsack-problem. Longest Common Subsequences. Matrix Chain Multiplication.
14. Backtracking: The idea of backtracking, the 8-Queens problem.
15. Linked lists: Definitions, comparison with the array, list algorithms (traversal, search, insert, delete).
16. Sorted linked lists: Definitions, algorithms (traversal, search, insert, delete), sentinel nodes, special linked lists (doubly,
multiply, circular).
17. Graphs 1: Directed, undirected, weighted graphs, graph as data structure, path, connectivity, cycles, components.
Finding an acyclic path (the labyrinth problem: Theseus, Ariadne and Minotaur).
18. Graphs 2: Minimum-weight spanning trees (Kruskal, Prim).

1



19. Graphs 3: Maximum flow.
20. Binary Search Tree: Concept of a tree, definitions, binary tree, binary search tree, BST operations (lookup, traversals,
insert, remove
21. B-trees: Definitions, advantages, disadvantages, insert a node, remove a node.
22. Hashing: The idea, direct addressing, various hashing tables, universal hashing, collision, solutions.
23. Object oriented programming: classes, inheritance, overriding, hiding, problems of multiple inheritance, polymorphism,
non-virtual and virtual methods.
24. Interfaces: Implicit and explicit interfaces, sorting example.
25. Event handling: Function pointers, events, delegates, examples.
26. Exception handling: Advantages, system exceptions, application exceptions, custom exceptions, exception rethrow,
examples.

Lecture schedule
Education

week Topic

Midterm requirements

Midterm Test Scheduling
Education

week Topic

Midterm grade calculation methods

Method of replacement

Type of exam
In case of a regular exam:
The exam has two parts:
First part (35 minutes): an entry test based on software design and development.
Second part (75 minutes, short break, 75 minutes again): full answers to questions related to the topics listed above, including
the solution of problems as well as theoretical issues. If you achieve less than 50
In the case of an online exam:
The exam has two parts:
First part: an online test based on software design and development in Moodle.
Second part: test questions in Moodle and full answers to questions relating engineering topics, including the solution of
problems and theoretical issues. During this second part of the exam, the students should download the questions in a .doc
file; they should enter their solutions into the file and then, saved as .pdf, they should upload it to the Moodle. You must
achieve an overall 50

The final grade is calculated as the average results of the two parts.
Exam grade calculation methods

You must pass the entry test, and achieve an overall 50

It is not possible to take any previous results into account.

Results are converted to grades for both parts based on the followings.

0-50% failed (1)
51-63% satisfactory (2)
64-75% average (3)
76-87% good (4)
88-100% excellent (5)

In case you passed the entry test, you may be exempted from writing the second part if the following criteria are met:
- You have at least a grade of 4.00 (without any rounding) in Software design and development I (NIXSF1EBNE) and
Software design and development II (NIXSF2EBNE) on average,
- You have at least a grade of 4.00 (without any rounding) in Digital systems (NIXDR0EBNE) and Electronics
(NIEEL0EBNE) on average.

In this case, the final grade of the Comprehensive exam is:
- good (4), if 4.00 ≤ mean of the grades above < 4.50
- excellent (5) if 4.50 ≤ mean of the grades above ≤ 5.00

2



It is not possible to be exempted in case of any accreditation of subjects from previous studies.
References
Obligatory:

Recommended:
Recommended Literature to the Software design and development part:
Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms. Third edition.

Others:

3


