Software Engineering Institute				Semester 1. of the curriculum 2024-25-1			
Name of the subject:		Code of the	Credits:	Weekly hours:			
		subject:			lec	sem	lab
Algorithms and data		NSXAA1EBNF	5	full-time	3	0	3
structures							
Responsible person f	or the subje	ct: Laszlo Csink	szlo Csink Classification: associate professor			essor	
Subject lecturer(s): Laszlo Csink, Daniel Kiss							
Prerequisites:			NSXSFAEBNF	Basics of Software Development			
Way of the assessment:		exam					
Course description							
Goal:	The aim of the course is to familiarise students with the basic algorithms for optimisation and problem solving and the most common data structures.						
Course description:	Common data structures: linked lists, sorted linked lists, stack, queue, priority queue,						
	hash set, dictionary, graph, binary tree. Binary search tree. B-tree. Heap. Hashing.						
	Graphs and graph algorithms.						

Lecture schedule					
Education week	Торіс				
1.	Backtracking Algorithm. Hamiltonian cycle, Sudoku, 8-queens, Chain of words, The knight's tour problem.				
2.	Optimization (Introduction to knapsack problem, recursive, memoization and dynamic solution. Coin change problem. Treasure hunt. Greedy algorithms.)				
3.	Linked lists. Traversal. Linear search. Insertion of nodes. Deletion of nodes. Linked list implementation. Simple linked list implementation example in C#. Sorted linked lists.				
4.	Stack,	queue, priority queue, dictionary.			
5.	Hashing. Simple hashing methods. Handling collision. Password protection. A HashSet application.				
6.	Graphs. Basic concepts. Graph as data structure. Maze and Minotaur. Components. Breadth-first Search. Depth-first Search. Dijkstra.				
7.	Trees.	Binary Search Tree. BST implementation in C#. Tree traversal.			
8.	B-Tree	. Insertion of a key. Deletion of a key a key. Applications.			
9.	Heaps.	Heaps.			
10.	Declara	ative programming paradigm. Functional programming.			
11.	Declara	Declarative programming paradigm. LSummary, consultaion.ogic programming.			
12.	Summa	ary.			
13.					
14.					
	Mid-term requirements				
Conditions for obtaining a		Attending the lectures and laboratory hours at the scheduled times is			
mid-term grade/signature		mandatory.			
		In weeks 8 and 13, the students write assessment midterm tests. Both tests are			
		worth 50 points each.			
Assessment schedule					
Education week		Торіс			
8 th lab		Midterm test from the topics presented in the lecture and lab			
13 th lab	Midterm test from the topics presented in the lecture and lab				
14 th lab	Replacement of either the first or the second midterm test (optional)				

Method used to calculate the *mid-term grade* (to be filled out only for subjects with mid-term grades)

The mid-term grade is determined by the sum of the points obtained by the student. Only students having completed the both midterm tests at least 40% (including possible replacement results) and obtained a total of at least 50 points can have a mid-term grade. If the number of absences of the student exceeds 30% of the total number of lessons, the student will be banned from the course.

	~	_		_	
Trino	of	the	1000	0.0000	ant
i vne	OI	ше	ren	асен	еш
	~-				

Type of the replacement of
written test/mid-term
grade/signatureOne of the two midterm exams can be retaken in week 14. If the student did
not complete the replacement exam at least 40%, or did not manage to
achieve at least 50 points out of the 100 points that can be obtained during the
semester, the mid-term grade can be only obtained on the mid-term grade
replacement exam in the examination period.

Type of the exam (to be filled out only for subjects with exams)

written exam in the exam period

Calculation of the exam mark (to be filled only for subjects with exams)

Maximum possible points for each subtask will be indicated on the exam sheet. A successful exam mmust exceed 50 % of points.

Final grade calculation methods:

The final grade is the average of the midterm grade and the written exam grade, provided that they are both above minimum level.

average of mi	dterm grade and written test	final mark			
	0-49%	1			
	50-61%	2			
62-73%		3			
74-85%		4			
86-100%		5			
References					
Obligatory:	Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms (The MIT Press, 2009)				
	Practical introductory videos and	nd notes available in Moodle			
Recommended:	Bradley L. Jones: Teach Yourself C# in 21 Days (Sams Publishing, 2001)				
Other references:	URL links presented at lectures	s and labs			