Institute of Cyber-p								
Name of the subject:		Code of the	Credits:	Weekly hours:				
		subject:	Credits:			lec	sem	lab
Advanced Computer		NIXKA1EBNE	2	full-time		2	0	0
Architectures I								
Responsible person for the subject: Dr. Mehdi Taassori				Classification:				
Subject lecturer(s):								
Prerequisites:		Introduction to Computer Architectures NIESA1EBNE						
Way of the assessment:		Exam						
Course description								
Goal:	This course offers an in-depth approach to Advanced Computer Architecture, focusing							
	on the principles of modern computer design and the application of key techniques for							
	performance optimization.							
Course description:	The course covers the fundamentals of quantitative design and analysis, processor							
	design principles, and the exploitation of parallelism. The focus is on fundamental							
	techniques to improve the performance in computer architecture.							

Lecture schedule				
Education week	Торіс			
1.	Fundamentals of Quantitative Design and Analysis			
	• Introduction			
	• Classes of Computers			
	Defining Computer Architecture			
2.	Fundamentals of Quantitative Design and Analysis			
	• Trends in Technology			
	 Trends in Power and Energy in Integrated Circuits Overtitative Principles of Computer Design 			
3.	Quantitative Principles of Computer Design			
5.	 Processor (Pipeline) An Overview of Pipelining 			
	 All Overview of Fipelining Pipelined Datapath and Control 			
	 Data Hazards: Forwarding versus Stalling 			
4.	Processor (Pipeline)			
т.	• Control Hazards			
	• Exceptions			
	 Parallelism via Instructions 			
5.	Instruction-Level Parallelism and Its Exploitation			
	• Instruction-Level Parallelism: Concepts and Challenges			
	• Basic Compiler Techniques for Exposing ILP			
	 Reducing Branch Costs With Advanced Branch Prediction 			
6.	Instruction-Level Parallelism and Its Exploitation			
	 Overcoming Data Hazards With Dynamic Scheduling 			
	 Dynamic Scheduling: Examples and the Algorithm 			
	 Hardware-Based Speculation 			
	 Exploiting ILP Using Multiple Issue and Static Scheduling 			
7.	Instruction-Level Parallelism and Its Exploitation			
	• Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and			
	Speculation			
	• Advanced Techniques for Instruction Delivery and Speculation			
	• Multithreading: Exploiting Thread-Level Parallelism to Improve			
0	Uniprocessor Throughput			
8.	Data-Level Parallelism in Vector, SIMD, and GPU Architectures			
	• Introduction			

9.	• Vector Architecture					
).	• Data-Level Parallelism in Vector, SIMD, and GPU Architectures					
	 Data-Level Parallelism in Vector, SIMD, and GPU Architectures SIMD Instruction Set Extensions for Multimedia 					
10.	Data-Level Parallelism in Vector, SIMD, and GPU Architectures					
10.	 Graphics Processing Units 					
	 Detecting and Enhancing Loop-Level Parallelism 					
11.	Thread-Level Parallelism					
	• Introduction					
	 Centralized Shared-Memory Architectures 					
12.	Thread-Level Parallelism					
	 Performance of Symmetric Shared-Memory Multiprocessors 					
	 Distributed Shared-Memory and Directory-Based Coherence 					
13.	Thread-Level Parallelism					
	 Synchronization: The Basics 					
	 Models of Memory Consistency: An Introduction 					
14.	Warehouse-Scale Computers to Exploit Request-Level and Data-Level					
	Parallelism					
	Mid-term requirements					
Conditions for obtaining	ng a Quizzes, Homeworks, Project					
mid-term grade/signatu						
	a signature.					
Type of the replacement						
Type of the replacement	nt of The signature retake exam is exclusively available to students whose average					
written test/mid-term	quiz grade is less than 51%.					
grade/signature						
]	Type of the exam (to be filled out only for subjects with exams)					
Written and multiple-cl	hoice exam					
Calcu	ulation of the exam mark (to be filled only for subjects with exams)					
Homework	10-15%					
• Quiz	• Quiz 0 - 15%					
• Project 0 - 10%						
• Exam 60 - 90%						
• The submission of homework and project by the designated deadline is mandatory for all students.						
• Attendance for quizzes, and the exam is mandatory.						
 Conducting the quiz and delivering the project depends on the class schedule. 						
A minimum of	• A minimum of 51% must be achieved in each exam to pass.					
Final grade calculatio	on methods:					
0-59 points - Fail						
60-69 points - Pass						
70-79 points – Satisfactory						
80-89 points - Good						
90-100 points – Excellent						
References						
Obligatory: Hennessy, John L., and David A. Patterson. <i>Computer architecture: a quantitative approach</i> . Elsevier, Sixth edition.						

Recommended:	Hennessy, John L., and David A. Patterson. <i>Computer architecture: a quantitative approach</i> . Elsevier, Fifth edition.
Other references:	Sorin, Daniel J., Mark D. Hill, and David A. Wood. A primer on memory consistency and cache coherence. <i>Synthesis lectures on computer architecture</i> (2011): 1-212.