ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

50-61\%: pass
62-73\%: satisfactory
74-85\%: good
86-100\%: excellent

Type of the replacement

Type of the replacement of written test/mid-term grade/signature		In the last week of the period either of the midterm tests can be rewritten. In case of failure, the mid-term grade can be acquired in the grade-retake exam held during the first 10 days of the examination period.
Type of the exam (to be filled out only for subjects with exams)		
Calculation of the exam mark (to be filled only for subjects with exams)		
Final grade calculation methods:		
References		
Obligatory:	Carl. D Industr 454-0 A.J. La S. Axl	Meyer: Matrix analysis and applied linear algebra, SIAM (Society for and Applied Mathematics) Press, Philadelphia, 2000, ISBN 0-89871- b: Matrix Analysis for Scientists and Engineers, SIAM, 2005 : Linear Algebra Done Right, 2nd ed., Springer, 1997
Recommended:	D. Cher	ey, T. Denton, A. Waldron: Linear algebra
Other references:	Materia	uploaded to the e-learning system of the university

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OFINFORMATICS

Type of the replacement	
Type of the replacement of written test/mid-term grade/signature	The signature can be acquired in the signature retake exam (during the first 10 days of the examination period).
Type of the exam (to be filled out only for subjects with exams)	
Oral	
Calculation of the exam mark (to be filled only for subjects with exams)	
30\% from the midterm test, 70% from the oral exam	
Final grade calculation methods:	
$\begin{array}{\|l\|} \hline 0-49 \%: \text { fail } \\ 50-61 \%: \text { pass } \\ 62-73 \%: \text { satisfactory } \\ 74-85 \%: \text { good } \\ 86-100 \% \text { : excellent } \\ \hline \end{array}$	
References	
Obligatory: \quad D. S. D	mmit and R. M. Foote: Abstract algebra, Wiley, 2004.
Recommended:	
Other references: Lectur	otes uploaded to the e-learning system of the university

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OFINFORMATICS

Lecture schedule	
Education week	Topic
1.	Introduction to measure theory
2.	Exterior measure and Lebesgue measure of $\mathbb{R}^{\text {d }}$
3.	Measurable functions and their properties
4.	Lebesgue integral
5.	Convergence theorems: Fatou lemma, Monotone convergence theorem and Lebesgue's dominated theorem
6.	$1^{\text {st }}$ midterm exam
7.	General measures and the Lebesgue Lp-spaces
8.	Differentiation: absolute continuous functions

	89\%-100\%	excellent (5)	
	76\%-88<\%	good (4)	
	63\%-75<\%	satisfactory (3)	
	51\%-62<\%	pass (2)	
	0\%-50<\%	fail (1)	
Type of the replacement			
Type of the replacement of written test/mid-term grade/signature	At the last week first ten days of retake exam.	mester one can ination period,	e a resit exam. In the re is a midterm grade
Type of the exam (to be filled out only for subjects with exams)			
Calculation of the exam mark (to be filled only for subjects with exams)			
Final grade calculation methods:			
References			
Obligatory: \quad E. Stein:	E. Stein: Real Analysis		
Recommended: ${ }^{\text {Rynne }}$	Rynne and Youngson: Linear Functional Analysis		
Other references:			

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Type of the replacement of written test/mid-term grade/signature	Written exam

Type of the exam (to be filled out only for subjects with exams)
Written and oral exam
Calculation of the exam mark (to be filled only for subjects with exams)
70% written exam $+30 \%$ oral exam
Final grade calculation methods:
0-50: fail (1)
51-62: pass (2)
63-75: satisfactory (3)
76-88: good (4)
89-100: excellent (5)

References

Obligatory:	Audin, Michèle; Geometry, Universitext, Springer, 2003.
Recommended:	Coxeter, H.S.M.; Introduction to Geometry, Wiley, 1969. Hoffmann Miklós: Topology and differential geometry, https://dtk.tankonyvtar.hu/xmlui/handle/123456789/8413
Other references:	

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OFINFORMATICS

Institute of Applied Mathematics				Semester 1. of the curriculum2023-24-1				
Name of the subject:		Code of the subject:	Credits:	Weekly hours:				
				lec	sem	lab		
Probability theory and mathematical statistics			NMXVS1EMNF	4	full-time		1	0
Responsible person for the subject: Dr. KÁRÁSZ Péter				Classification: associate professor				
Subject lecturer(s):								
Prerequisites:			escription					
Way of the assessment:		exam						
Course description								
Goal:	To lay the foundations of probability theory and statistics							
Course description:	Kolmogorov probability space; law of total probability; conditional probability; Bayes' theorem; probability distribution function; expectation, variance and moments; special distributions (Poisson, uniform, etc.). Moment generating function, characteristic function. Joint distributions; random vectors; independence; covariance matrix. General definition and properties of conditional expectation; law of total expectation. Types of convergence; Borel-Cantelli lemmas; laws of large numbers; sums of random variables; central limit theorems. Statistical space; sample; statistics; ordered sample; empirical distribution function; Glivenko-Cantelli theorem. Estimation techniques, maximum-likelihood estimation, method of moments, method of least squares. Hypothesis testing; confidence intervals. Parametric and nonparametric tests.							

	Lecture schedule
Education week	Topic
1.	Kolmogorov probability space and related notions. Examples.
2.	Law of total probability; conditional probability, Bayes' theorem. Random variables and their properties. Probability distribution function; expectation, variance and moments
3.	Special discrete and continuous random variables and their properties (Poisson, uniform distributions, etc.)
4.	Continuation of lecture 3 plus moment generating functions, characteristic function
5.	Joint distributions; random vectors; independence; covariance matrix.
6.	General definition and properties of conditional expectation; law of total expectation.
7.	Types of convergence; Borel-Cantelli lemmas; laws of large numbers; sums of random variables; central limit theorems.
8.	Continuation of lecture 7.
9.	Statistical space; sample; statistics; ordered sample; empirical distribution function; Glivenko-Cantelli theorem.
10.	Continuation of lecture 9.
11.	Estimation techniques, maximum-likelihood estimation, method of moments, method of least squares.
12.	Hypothesis testing; confidence intervals
13.	Parametric and nonparametric tests

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OF INFORMATICS

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Software Engineering Institute				Semester 1. of the curriculum2023-24-1			
Name of the subject:		Code of the	Credits:	Weekly hours:			
		subject:			lec	sem	lab
Introduction to MATLAB programming		NSXBM1EMNF	4	full-time	0	0	2
Responsible person for the subject: Dr. SERGYÁN Szabolcs				Classific	assoc	e pro	
Subject lecturer(s):							
Prerequisites:							
Way of the assessment:		mid-term grade					
Course description							
Goal:	Acquiring the fundamental knowledge and applications related to MATLAB. It serves the dual purpose of teaching computer programming and providing a background in MATLAB.						
Course description:	Variables, arrays, vectors and matrices; MATLAB functions, loops, decisions in MATLAB. Linear algebra with MATLAB; basics of 2-D plots, data visualization: frequencies, bar charts and histograms. File input/output operations.						

Lecture schedule

Type of the replacement		
Type of the replacement of written test/mid-term grade/signature		One of the midterms can be replaced
Type of the exam (to be filled out only for subjects with exams)		
Calculation of the exam mark (to be filled only for subjects with exams)		
Final grade calculation methods:		
References		
Obligatory:	$\begin{array}{\|l} \hline \text { J. Mic } \\ 2013 . \\ \hline \end{array}$	el Fitzpatrick, Á. Lédeczi - Computer
Recommended:	$\begin{aligned} & \hline \text { B. Hal } \\ & 2002 . \end{aligned}$	and D. Valentine, Essential MATLA
Other references:		

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Institute of Applied Mathematics			Semester 2. of the curriculum 2023-24-2			
Name of the subject:	Code of the subject:	Credits:	Weekly hours:			
				lec	sem	lab
Discrete mathematics	(4	full-time	2	1	0
Responsible person for the subject: Dr. HEGEDÜS Gábor			Classification: associate professor			
Subject lecturer(s):						
Prerequisites:						
Way of the assessment:	$: \quad$ exam					
Course description						
Goal:	Developing the student's conceptualization, abstraction, and problem-solving abilities by learning about the basic topics of discrete mathematics, as well as their applications in problem solving and model creation. The basic concepts of graph algorithms and complexity theory are learned from the theory of algorithms.					
Course description:P ex f B co c t p H f 	Principle of mathematical induction, pigeonhole principle, principle of inclusion and exclusion. Permutations, variations and combinations, binomial theorem. Generating functions and their basic properties. Linear recurrence relations, Stirling, Catalan, Bell and Fibonacci sequences. The basic properties of graphs, subgraphs, complements and graph isomorphism. Trees, forests, Prüfer code, Euler trails and circuits, Hamilton paths and cycles, Ore's theorem, Posa's theorem, extreme graph theory, Turán's theorem. Graph colouring, Brooks' theorem, Vizing's theorem, perfect graphs, planar graphs, dual graphs, Kuratowski's theorem. Matching theory, Hall's theorem, König's theorem, Gallai's theorem, Hungarian method, flows, maxflow min-cut theorem.					

Lecture schedule	
Education week	Topic
1.	Principle of mathematical induction, pigeonhole principle, principle of inclusion and exclusion
2.	Permutations, variations and combinations, binomial theorem
3.	Generating functions and their basic properties
4.	Linear recurrence relations
5.	Stirling, Catalan, Bell and Fibonacci sequences
6.	First midterm test
7.	The basic properties of graphs, subgraphs, complements and graph isomorphism
8.	Trees, forests, Prüfer code
9.	Euler trails and circuits, Hamilton path and cycles, Ore's theorem, Posa's theorem, extreme graph theory, Turán's theorem
10.	Vertex colouring, Brooks' theorem, Vizing's theorem
11.	Perfect graphs, planar graphs, dual graphs, Kuratowski's theorem
12.	Matching theory, Hall's theorem, König's theorem, Gallai's theorem, Hungarian method, flows, max-flow min-cut theorem
13.	Second midterm test
14.	Test retake
Conditions for obtaining a mid-term grade/signature	
The student obtains the signature only if they have written both midterm test and reach at least 50\% of the scores. The midterm tests consist of theoretical questions and exercises from the material of the lectures and classes. It is compulsory to attend the lectures and classes, the absence may not exceed 30\% of the lectures.	

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Software Engineering Institute			Semester 2. of the curriculum 2023-24-2			
Name of the subject:	Code of the subject:	Credits:	Weekly hours:			
				lec	sem	lab
Interpolation and approximation	NSXIA1EMNF	4	full-time	2	0	0
Responsible person for the subject: Prof. Dr. GALÁNTAI Aurél			Classification: professor emeritus			
Subject lecturer(s):						
Prerequisites:						
Way of the assessment:	exam					
Course description						
Goal: T t Course description: U Sp f	The aim of the course is getting to know the basic interpolation and approximation techniques and results.					
	Univariate and multivariate Interpolation. Lagrange interpolation and its convergence. Spline interpolation. Chebyshev approximation by polynomials and rational functions. Padé approximation. Least squares approximation. Fourier approximation.					

Lecture schedule				
Education week	Topic			
1.	Introduction			
2.	Interpolation I.			
3.	Interpolation II.			
4.	Interpolation III.			
5.	Spline interpolation I.			
6.	Spline interpolation II.			
7.	Spline interpolation III.			
8.	Chebyshev approximation I.			
9.	Chebyshev approximation II.			
10.	Chebyshev approximation III.			
11.	Rational approximation, Padé approximation, Applications			
12.	Least squares approximation of real functio			
13.	Fourier series I.			
14.	Fourier series II.			
Mid-term requirement				
Conditions for obtaining a mid-term grade/signature		The assi submitte condition		
Assessment schedule				
Education week	Top			
Method used to calculate the mid-term grade (to be filled out only for subjects with mid-term grades)				
Type of the replacement				

Type of the replacement of written test/mid-term grade/signature		Assignments not submitted or not accepted can be resubmitted until day 10 of the examination period.
Type of the exam (to be filled out only for subjects with exams)		
Oral exam.		
Calculation of the exam mark (to be filled only for subjects with exams)		
The assessment is based on the performance of the oral exam.		
Final grade calculation methods:		
References		
Obligatory:	Lecture	lides
Recommended:	$\begin{array}{\|l} \hline \text { J.H. Ah } \\ \text { J. Busta } \\ \text { Birkhäu } \\ \text { Publish } \\ \text { P.J. Da } \\ \text { G.G. LC } \\ \text { G. Mas } \\ \text { T.J. Riv } \\ \hline \end{array}$	berg, E.N. Nilson, The theory of splines and their applications, Academic Press, 1967 nante, Algebraic approximation: A Guide to Past and Current Solutions, er, 2012 E.W. Cheney, Introduction to approximation theory, AMS Chelsea g, 2000 s, Interpolation and approximation, Dover, 1975 entz, Approximation of functions, AMS Chelsea Publishing, 2005 oianni, G.V. Milovanovic, Interpolation Processes, Basic Theory and Applications, Springer, 2008 n, An introduction to the approximation of functions, Dover, 1981
Other references:		

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Type of the replacement		
Type of the replacement of written test/mid-term grade/signature	Resit exam on the last week	
Type of the exam (to be filled out only for subjects with exams)		
Final written exam of 180 mins		
30 \% home assessments + 70 \% final exam		
Final grade calculation methods:		
0-50 fail (1) $51-62$ pass (2) 63-75 satisfactory (3) $76-88$ good (4) excellent (5)		
References		
Obligatory:	R. Kent Nagle, Edward B. Saff, Arthur David Snider: Fundamentals of Differential Equations and Boundary Value Problems, 8th Edition, Addison-Wesley, 2011.	
Recommended:	D. Strogatz: Non-linear dynamics and chaos, Westview Press, 2001.	
Other references:	E. Lieb, M. Loss: Analysis, Amer. Math. Soc., Providence, 2001.	

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Institute of Applied Mathematics				Semester 2. of the curriculum 2023-24-2				
Name of the subject:		Code of the subject:	Credits:	Weekly hours:				
				lec	sem	lab		
Stochastic processe	and applications		$\begin{aligned} & \text { NMXH } \\ & \text { S1EMN } \\ & \text { F } \end{aligned}$	5	fulltime	2	2	0
Responsible person for the subject: Dr. KÁRÁSZ Péter				Classification: associate professor				
Subject lecturer(s):								
Prerequisites:								
Way of the assessment:		exam						
Course description								
Goal: Course description:	To lay the foundations of stochastic processes and give applications of the theory.							
	Notion of stochastic processes. Discrete Markov chains: classification of states, limiting probabilities, applications. Continuous Markov chains, Poisson processes, Renewal processes, birth and death processes. Queueing theory. Martingales. Further applications.							

Type of the replacement of written test/mid-term grade/signature	cf. TVSZ

Type of the exam (to be filled out only for subjects with exams)

Written exam

Calculation of the exam mark (to be filled only for subjects with exams)

Final grade calculation methods:

Achieved result	Grade
$89 \%-100 \%$	excellent (5)
$76 \%-88<\%$	$\operatorname{good}(4)$
$63 \%-75<\%$	satisfactory (3)
$51 \%-62<\%$	pass (2)
$0 \%-50<\%$	fail (1)

References

Obligat ory:	S. Karlin, H. M. Taylor: A First Course in Stochastic Processes
Recom mended:	Janko Gravner: Lecture Notes for Introductory Probability. https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf Rick Durrett: Essentials of Stochastic Processes. Springer, 2010.
Other referenc es:	

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Institute of Applied Mathematics			Semester 2. of the curriculum 2023-24-2			
Name of the subject:	Code of the	Credits:	Weekly hours:			
	subject:			lec	sem	lab
Responsible person for the subject: Prof. Dr. TAKÁCS Márta			full-time	2	2	0
			Classification: professor			
Subject lecturer(s):						
Prerequisites:						
Way of the assessment:	t: ${ }^{\text {exam }}$					
Course description						
Goal: ${ }^{\text {a }}$	The subject presents the most important methods of optimization problems, which can be used on economy, industrial, scientific area					
Course description: ${ }^{\text {Op}}$ in	Operational methods, Geometry of linear programming, simplex method, duality, integer programming, network optimization, Game theory					

Lecture schedule	
Education week	Topic
1.	Operational research, optimization
2.	Geometry of linear programming
3.	Simplex method 1.
4.	Simplex method 2.
5.	Duality 1.
6.	Duality 2.
7.	1st midterm
8.	Integer programming 1.
9.	Integer programming 2.
10.	Network optimization 1.
11.	Network optimization 2.
12.	Game theory
13.	2nd midterm
14.	Retake
Mid-term requirements	
Conditions for obtaining a mid-term grade/signature	50\% of the midterms in average
Assessment schedule	
Education week	Topic
7	Weeks 1-6
13	Weeks 8-12
14	Test retake
Method used to calculate the mid-term grade (to be filled out only for subjects with mid-term grades)	
Type of the replacement	
Type of the replacement of written test/mid-term grade/signature	Retake of the midterm on week 14.
Type of the exam (to be filled out only for subjects with exams)	

Written exam

Calculation of the exam mark (to be filled only for subjects with exams)

Final grade calculation methods:

$0-49 \%$: fail (1)
$50-61 \%$: pass (2)
62-73\%: satisfactory (3)
$74-85 \%$: good (4)
86-100\%: excellent (5)

References

Obligatory:	Dimitris Bertsimas, John N. Tsitsiklis: Introduction to Linear optimization
Recommended:	
Other references:	

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Institute of Applied Mathematics				Semester 2. of the curriculum2023-24-2			
Name of the subject:		Code of the	Credits:	Weekly hours:			
		subject:			lec	sem	lab
Fourier analysis and series		NMXFA1EMNF	4	full-time	2	0	0
Responsible person for the subject: Prof. Dr. TAR József				Classification: professor			
Subject lecturer(s):							
Prerequisites:		NMXAN1EMNF	Analysis				
Way of the assessment:		exam					
Course description							
Goal: Course description:	Acquiring the foundations and applications related to Fourier analysis						
	Fourier expansion of periodic functions, convergence of Fourier series. Hilbert space and its orthonormal basis. Fourier method and its application to PDEs, boundary value problems. Wavelets. Fourier transform, inversion formula and PDEs.						

Written exam of 120 mins

Calculation of the exam mark (to be filled only for subjects with exams)

0-50 fail (1)

51-62 pass (2)
63-75 satisfactory (3)
76-88 good (4)
89-100 excellent (5)
Final grade calculation methods:
30% midterms $+70 \%$ exam

References

Obligatory:	A. Vretblad, Fourier Analysis and Its Applications, Springer, 2003
Recommended:	N. Ashmar, Partial Differential Equations with Fourier series and Boundary Value Problems, 3rd Edition, Dover Books, 2016
Other references:	-

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OF INFORMATICS

Software Engineering Institute			Semester 3. of the curriculum 2024-25-1			
Name of the subject:	Code of the	Credits:	Weekly hours:			
	subject:			lec	sem	lab
Engineering computational methods	NSXMS1EMNF	5	full-time	2	0	2
Responsible person for the subject: Prof. Dr. GALÁNTAI Aurél			Classification: professor emeritus			
Subject lecturer(s):						
Prerequisites: Way of the assessment:	NMXDE1EMNF	Differential equations				
	exam					
Course description						
Goal: \quad Study of	Study of numerical methods for differential equations.					
Course description:Solution Method Discreti Matlab	Solution of linear and nonlinear system of equations. Methods for ODE IVP and BVP. Their programming, convergence and stability. Discretizations of PDE. Variational methods. Ritz and Galerkin methods. FEM. Matlab programming and Matlab programs.					

Lecture schedule				
Education week	The elements of Matlab			
1.	Direct solution methods of linear systems 1			
2.	Direct solution methods of linear systems 2			
3.	Solution methods of nonlinear equations			
4.	Discretization methods of ODE IVPs 1	\quad	5.	Discretization methods of ODE IVPs 2
:---:	:---			

Type of the exam (to be filled out only for subjects with exams)
Oral exam.
Calculation of the exam mark (to be filled only for subjects with exams)
The assessment is based on the performance at the oral exam.
Final grade calculation methods:

References

Obligatory:	A. Galántai A.: Engineering Computational Methods 1 2014/2015 spring semester (lecture notes)
Recommended:	U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1995
	S.C. Brenner, L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, 2008 C.G. Broyden, M.T. Vespucci, Krylov Solvers for Linear Algebraic Systems, Elsevier, 2004
Other references:	

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OF INFORMATICS

Biomatics and Applied Artificial Intelligence Institute			Semester 3. of the curriculum 2024-25-1		
Name of the subject:	Code of the subject:	Credits:	Weekly hours:		

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY OF INFORMATICS

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
Institute of Applied Mathematics

Name of the subject:	Code of the subject:	Credits:	Weekly hours:			
				lec	sem	lab
System and control theory	NMXSC1EMNF	5	full-time	2	0	2
Responsible person for the subject: Prof. Dr. TAR József			Classification: professor			
Subject lecturer(s):						
Prerequisites:	NMXDE1EMNF	Differential equations				
Way of the assessment:	exam					

Course description

Goal:
Course description:

The aim of this course is to provide the students with the fundamental classical knowledge of control technology and to consider certain modern approaches. Model Predictive Controller (MPC): optimization under constraints, Lagrange multipliers, reduced gradient, auxiliary function, nonlinear programming. The heuristic Receding Horizon Control. Simulation issues: MS EXCEL - Solver, legally free alternatives of MATLAB: Julia language. General description of the LTI systems: stability, observability, controllability. The method of "Pole Placement". State estimation by the Luenberger Observer. MPC for LTI models and quadratic cost functions: the LQR regulator. Tackling the LTI systems in the frequency domain: basics in Distribution Theory: the function class D and its use for classical modelling. Singular Value Decomposition (SVD), the H_{∞} norm, robust design, the "minimax" principle. Robust nonlinear controller: the Sliding Mode / Variable Structure Controller. Adaptive controllers: the "kappa" function class, Lyapunov's "stability", "uniform stability", and "asymptotic stability" definitions, quadratic Lyapunov functions, Control Lyapunov function, Backstepping Control, the "Adaptive Inverse Dynamics Robot Controller".

Lecture schedule	
Education week	Topic
1.	Model Predictive Controller (MPC): realization on a finite time-grid: the Receding Horizon Controller optimization under constraints, Lagrange multipliers, reduced gradient, auxiliary function, nonlinear programming.
2.	The continuous case: minimization of functionals, dynamic programming; Special case: the LQR regulator.
3.	Simulation issues: MS EXCEL - Solver, legally free alternatives of MATLAB: Julia language.
4.	General description of the LTI systems: stability, observability, controllability.
5.	Luenberger observer; Special cases for a single variable control signal: Lyapunov function, Control Lyapunov Function, Pole Placement.
6.	Tackling the LTI systems in the frequency domain: basics in Distribution Theory: the function class D and its use for classical modelling. Singular Value Decomposition (SVD), the H∞
7.	Control of strongly nobustinear design, the "minimax"" principle. class "kappa", quadratic Lyapunov functions, stability definitions; Control Lyapunov function.
8.	Quadratic Lyapunov functions; Backstepping design for the control of hierarchical systems.
9.	The Robust Variable Structure/Sliding Model Controller.
10.	Lyapunov function-based adaptive control: example: the Adaptive Inverse Dynamics Controller.
11.	Alternatives of the Lyapunov function-based adaptive control design: Fixed Point Iteration-based Adaptive Control, Banach's Theorem.

ar
ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OFINFORMATICS

12.	Fixed Point iteration-based Model Reference Adaptive Control.	
13.	Consultations for the course work submission.	
14.	Consultations for the course work submission.	
Mid-term requirements		
Conditions for obtaining a mid-term grade/signature		Student participation in the lectures and labs is required. All homeworks and the classroom test are required to be completed during the term.
Assessment schedule		
Education week		Topic
By the end of the term	Submission of simulation program developed by the students with documented results.	
Method used to calculate the mid-term grade (to be filled out only for subjects with mid-term grades)		
Type of the replacement		
Type of the replace written test/mid-ter grade/signature	ment of m	Prompt elaboration of a control simulation.
Type of the exam (to be filled out only for subjects with exams)		
Oral examination (classical colloquium)		
Calculation of the exam mark (to be filled only for subjects with exams)		
Final grade calculation methods:		
References		
Obligatory:	Free of charge available lecture notes in PDF and the programming aids with which the students are provided during the course.	
Recommended:	Kemin Zhou, John C. Doyle, Keith Glover: Robust and Optimal Control, Pearson; 1 edition, 1995. J. K. Tar, L. Nádai, I. J. Rudas: System and Control Theory with Especial Emphasis on Nonlinear Systems, TYPOTEX, Budapest, 2012, ISBN 978-963-279-676-5	
Other references:		

Lecture schedule

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Biomatics and Applied Artificial Intelligence Institute			Semester 4. of the curriculum 2024-25-2			
Name of the subject:	Code of the subject:	Credits:	Weekly hours:			
				lec	sem	lab
Cryptography and quantum cryptography	NBXCQ1EMNF	5	full-time	2	0	2
Responsible person for the subject: Prof. Dr. KOZLOVSZKY Miklós ${ }_{\text {c }}$ Classification: professor						
Subject lecturer(s):						
Prerequisites:	NMXAS1EMNF	Algebra and number theory				
Way of the assessment:	exam					
Course description						
Goal:						
Course description:						

Calculation of the exam mark (to be filled only for subjects with exams)

Final grade calculation methods:

References

Obligatory:	
Recommended:	
Other references:	

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY

Institute of Applied Mathematics				Semester 4. of the curriculum 2024-25-2				
Name of the subject:		Code of the subject:	Credits:	Weekly hours:				
				lec	sem	lab		
Information and coding theory			NMXIK 1EMNF	4	fulltime	3	0	0
Responsible person for the subject: Prof. Dr. TAKÁCS Márta				Classification: professor				
Subject lecturer(s):								
Prerequisites:		NMXL A1EMN F	Linear algebra					
Way of the assessment:		exam						
Course description								
Goal:	The purpose of this course is to provide a summary of the mathematical foundations of information and code theory and to introduce students to the general rules of code theory, compression and cryptography. During the course, students will have a basic understanding of mathematical coding techniques and will gain proficiency in security issues							
Course description:	The basic principle of information theory. Information and entropy, schema of communication channel. Variable length source code - prefix code, Huffman code. Conditional entropy and mutual information measure. Channel capacity. Bug fix coding. Finite vector spaces and their relationship to coding. Data compression algorithms. Cryptographic Methods - Summaries.							

Lecture schedule

Education week	Topic	
1.	Basic concepts of information theory	
2.	Information and entropy, Schema of Telecommunication Channel	
3.	Variable length source code - prefix code, Huffman code	
4.	Conditional entropy and mutual information	
5.	Channel Capacity. The basic principle of information theory	
6.	$1^{\text {st }}$ mid-term exam (online test, if we will have online work schedule)	
7.	Error correction coding	
8.	Finite vector spaces	
9.	Linear Codes (Hamming, Extended and Abbreviated Codes)	
10.	Data Compression. Run length compression, LZV	
11.	Cryptography, history and algorithms used	
12.	$2^{\text {nd }}$ mid-term exam (online test, if we will have online work schedule)	
13.	Presentation of individual projects	
14.	Presentation of individual projects	
Mid-term requirements		
Conditions for obtaining a mid-term grade/signature	The student may only receive the signature if: - During the semester he / she wrote both midterm exams (maximum score 25 points / midterm exam). Replacement of those exams is possible at a pre-arranged time, in the 14th week of the semester.	

Final grade calculation methods:

The final grade is calculated as follows:
Midterm exams: $2 * 25$ points, individual project - at best 15 points, uploaded homework at best 35 points. A minimum of 30% must be achieved in each part
Final exam (if the offered grade based on the cumulative result during the semester activity is not acceptable for the student or the cumulative points are below 50 points):
oral/written answer from the theoretical background. (at best 50 points, 50% of the whole result).

References

Obligat ory:	Gareth Jones, Mary Jones: Information and Coding Theory, Springer (2002), ISBN-13: 978-1852336226
Recom mended:	Stefan Moser, Po Ming-Chen, Coding and Information Theory, Cambridge Univ. Press (2012), ISBN-13: 978-1107684577
Other referenc es:	notes and presentations prepared by the lecturer, uploaded to the actual Moodle page

ÓBUDA UNIVERSITY
JOHN VON NEUMANN FACULTY
OF INFORMATICS

\left.| Lecture schedule | |
| :---: | :---: |
| Education week | Topic |
| 1. | Homogeneous coordinates and 3D transformations. Modeling objects. |
| 2. | Camera models, orthographic and perspective projection. Objects in 3D projections. |
| 3. | The imaging basics. Gray scale and color images features: resolution, histogram, etc. |
| 4. | Typical image noises, distortions. Image enhancements, image filtering. Histogram |
| and modification in compensation. | |$\right]$| Methods of edge detection, edge enhancement, smoothing. Line and curve detection, |
| :---: |
| Hough transform. |

Type of the replacement of written test/mid-term grade/signature	
Type of the exam (to be filled out only for subjects with exams)	
Calculation of the exam mark (to be filled only for subjects with exams)	
	Final grade calculation methods: $0 \%-50 \%:$ fail (1) $51 \%-62 \%: ~ p a s s ~(2) ~$ $63 \%-75 \%: ~ s a t i s f a c t o r y ~(3) ~$ $76 \%-88 \%:$ good (4) $89 \%-100 \%:$ excellent (5)
Obligatory:	R. Szeliski: Computer Vision Algorithms and Applications, Springer, 2011 Gonzales, Woods: Digital Image Processing, 3rd edition. Prentice Hall, 2008
Recommended:	
Other references:	

			Semester 1. of the curriculum2023-24-1			
Name of the subject:	Code of the subject:	Credits:		kly		
				lec	sem	lab
Physical education 1	GTTTS1EMNF	1	full-time	0	1	0
Responsible person for the subject:			Classification:			
Subject lecturer(s):						
Prerequisites:						
Way of the assessment	mid-term grade					
Course description						
Goal:						
Course description:						

Calculation of the exam mark (to be filled only for subjects with exams)

Final grade calculation methods:

References

Obligatory:	
Recommended:	
Other references:	

			Semester 2. of the curriculum2023-24-2			
Name of the subject:	Code of the subject:	Credits:	Weekly hours:			
				lec	sem	lab
Physical education 2	GTTTS2EMNF	1	full-time	0	1	0
Responsible person for the subject:			Classific			
Subject lecturer(s):						
Prerequisites:						
Way of the assessment:	mid-term grade					
Course description						
Goal:						
Course description:						

Calculation of the exam mark (to be filled only for subjects with exams)

Final grade calculation methods:

References

Obligatory:	
Recommended:	
Other references:	

Dean's Office			Semester 3. of the curriculum 2024-25-1			
Name of the subject:	Code of the subject:	Credits:	Weekly hours:			
				lec	sem	lab
Thesis work I.	NDDDM1EMNF	10	full-time	0	0	0
Responsible person for the subject: Prof. Dr. KRISTALY Alexandru			Classification: professor			
Subject lecturer(s):						
Prerequisites:						
Way of the assessment	signature					
Course description						
Goal:						
Course description:						

Calculation of the exam mark (to be filled only for subjects with exams)

Final grade calculation methods:

References

Obligatory:	
Recommended:	
Other references:	

Dean's Office			Semester 4. of the curriculum 2024-25-2			
Name of the subject:	Code of the	Credits:	Weekly hours:			
	subject:			lec	sem	lab
Thesis work II.	NDDDM2EMNF	10	full-time	0	0	0
Responsible person for the subject: Prof. Dr. KRISTALY Alexandru			Classification: professor			
Subject lecturer(s):						
Prerequisites:	NDDDM1EMNF	Thesis work I.				
Way of the assessment	signature					
Course description						
Goal:						
Course description:						

Calculation of the exam mark (to be filled only for subjects with exams)

Final grade calculation methods:

References

Obligatory:	
Recommended:	
Other references:	

